Конечно, нам интересно вооружиться всеми (желательно) отсылками к книге И.И. Жегалкина, чтобы несколько дальше продвинуться в понимании затронутой темы. Но просто переписать соответствующие выдержки не представляется здесь возможным – их слишком много. Поэтому мы ограничимся лишь избранными примерами и еще теми цитатами, без которых некоторые места лосевского наброска все еще оставались бы не вполне ясными.
Для начала познакомимся с образцами достаточно очевидных соответствий, которые Лосев выстраивал между каждым содержательным философским тезисом и формулировками математической теории. Возьмем 6-ой тезис: Всё со всем всегда сходно
. На языке теории множеств (читаем параграфы 299 и 300 из «Трансфинитных чисел» – к ним отсылает, напомним, авторская пометка рядом с тезисами) эта же мысль выражается в виде двух теорем: «Из двух множеств Р и Q одно всегда эквивалентно части другого»; «Если два множества Р и Q не эквивалентны между собой, то одно из них эквивалентно правильной части другого» 11. Даже если не уточнять, как в теории множеств определяется эквивалентность множеств и что такое правильная часть произвольного множества, содержание этих теорем не требует особых разъяснений, как очевидна и прямая перекличка с 6-м тезисом. В случае многих других тезисов такие переклички также вполне прозрачны, хотя они подчас требуют уже более серьезного овладения аппаратом теории множеств. Для примера рассмотрим 3-й тезис: Имя инобытия ничего не прибавляет к сущности и не убавляет. Этому тезису Лосев поставил в соответствие следующие утверждения из книги Жегалкина:«Если от бесконечного множества S
отнять какую угодно конечную часть S′, то мощность множества не изменится» (§ 304);«Если от бесконечного множества S
, несчетной мощности, отнять часть S′ конечной или счетной мощности, то мощность остатка равна мощности множества» (§ 305);«Если к бесконечному множеству S
прибавить конечное или счетное множество, то мощность множества не изменится» (§ 306) 12.В других теоремах, которые мы здесь не воспроизводим, утверждается также, что и операции сложения и умножения не выводят результат за пределы данного типа бесконечности 13
.С помощью книги «Трансфинитные числа» мы теперь можем вполне точно уяснить, что Лосев имел в виду в своем тезисе 10, упоминая об «определении первозданной или возрожденной сущности». Обозначение через W
, введенное здесь Лосевым, повторяет обозначение у Жегалкина для вполне упорядоченных множеств I и II классов, т.е. для всех конечных и счетных множеств 14. Еще одно обозначение, использованное автором в описании свойств «Первозданного имени» (пункт h) – наименьшее число w. В соответствующем месте из книги Жегалкина, все так же пользуясь лосевской отсылкой к ней, читаем: «w наименьшее из чисел II класса» 15, т.е. наименьшее из всех трансфинитных порядковых чисел (оно выполняет среди них роль нуля), большее любого конечного числа, принадлежащего к числам I класса.Теперь рассмотрим примеры соответствия имяславских тезисов и теоретико-множественных данных, как они виделись Лосеву, для случаев принципиально важных, можно сказать даже, узловых во всем учении. К таковым, прежде всего, относится тезис 13-й: Имя Божие больше всякой бесконечности и не есть эта бесконечность
. У Лосева для иллюстрации данного утверждения указаны отсылки к только что приведенному у нас определению наименьшего числа II числового класса (§ 330), которое больше любого конечного числа, а также к определению наименьшего числа из следующего «яруса» бесконечностей (§ 338) – числа W, которое в свою очередь «больше всех чисел II класса и не есть число II класса» 16. Вслед за трансфинитными числами II класса следует класс III-й, мощность которого превышает мощности предыдущих классов (§ 340), и т.д. и т.д. Таким образом, за любым произвольно взятым классом бесконечности (классом трансфинитных чисел) теория множеств всегда находит новый класс, и этот процесс движения по иерархии бесконечностей сам оказывается бесконечным.