Читаем Реникса (второе издание) (с илл.) полностью

Предметы можно разбивать на классы, и притом по-разному. Скажем, перед нами гора камней. Разложить их можно на кучи по весу: в одной будут камни весом до килограмма, в другой — от одного килограмма до двух, в третьей — от двух до трех и т. д. Можно классифицировать их по цвету: отдельно черные, отдельно серые, отдельно зеленые… Можно разбить их на группы в зависимости от формы.

Подобное разделение может быть не только физическим, но и мысленным. Например, находящиеся в сосуде молекулы газа можно мысленно разбить на двухатомные, трехатомные, четырехатомные. Эти и им подобные примеры не преподнесут нам никаких сюрпризов. Но вот пример другого сорта. Здесь мысленное распределение фактов, явлений, предметов по полкам провести не удастся.

Рассмотрим классы, единственным признаком которых является то, что они состоят более чем из пяти членов. Например, один класс — это шесть коров, второй класс — двадцать два камня, третий — десять граммофонов, четвертый — миллиард молекул… Поскольку классов с таким признаком (больше пяти элементов) очень много, то ясно, что класс таких классов является членом самого себя. Таких примеров классов, которые являются членами самих себя, очень много. И вот тут-то, в примере с классом, являющимся членом самого себя, мы покидаем почву опыта: разделение предметов на упомянутые классы уже в принципе не может быть произведено на опыте.

Разумеется, есть классы, не удовлетворяющие этому условию. Так, класс камней, с которого мы начали, не является членом самого себя, поскольку класс камней не один камень. То же относится и к классу людей, коров или письменных столов.

Рассмотрим теперь класс классов второго типа, то есть таких, которые не являются членами самих себя. К какому типу из двух принадлежит он: является членом самого себя или нет?

Так как его членами являются классы, которые не являются членами самого себя, то этот класс классов будет являться членом самого себя, если он не является членом самого себя.

Вот вам и парадокс.

Может быть, не вдумались? Повторю еще раз.

Обозначим классы, которые являются членами самого себя, через Я, а такие классы, как класс камней, лошадей или людей (то есть не являющиеся членами самих себя), через Н. Вопрос: принадлежит ли класс, членами которого являются классы «Н», к типу «Я» или типу «Н»? К типу «Я» он не принадлежит, поскольку состоит из классов типа «Н». Но тогда он относится К типу «Н». Но ведь он состоит из классов «Н»? Значит, он относится к типу «Я».

Итак, с одной стороны, относится, а с другой — не относится.

Вдумались? Положение, как видите, безвыходное. Да, логика отказала. Где же бессмыслица?

Она все в том же — нельзя играть словами, отрываясь от опыта. Все неприятности возникают сейчас же, как только мы начинаем вводить в качестве условия членства в классе возможность не содержаться в самом себе, или не содержаться в своих членах, или что-либо подобное. Короче говоря, абсурд возникает именно тогда, когда теряется связь с реальной действительностью.

Разумеется, формальная логика всегда может быть спасена введением дополнительных ограничений или условий. Это, однако, нас сейчас не интересует. Мы достигли своей цели — показали на нескольких примерах, в какие тупики может завести игра словами.

<p>Два полюса — схоластика и естествознание</p>

Игра словами как метод познания и объяснения жизни восходит к Аристотелю, доведена была совершенства схоластами средних веков и сохраняется почти неизменной в «учениях» современных отцов церкви и реакционных философов. Уверенность в том, о сочетания слов имеют смысл безотносительно их практического содержания, удивительно живуча. Лишь последние десятилетия естествоиспытатели научились пользоваться словами так, как должно ими пользоваться.

Нет ничего странного в том, что естествознание первым проделало тот путь, который еще предстоит совершить другим областям науки. Вера в изначальный смысл слова, которую преодолела физика, еще порой присутствует (иногда с минимальной модернизацией) в сочинениях, посвященных взаимоотношениям людей друг с другом и с природой. Поэтому представляется нелишним познакомить читателя с типичными схоластическими рассуждениями.

Начнем сначала — вчитаемся в туманные нагромождения слов и вникнем в принцип объяснения природы по Аристотелю.

В противоположность современной науке, которая полагает, что жизнь надо объяснять количественными категориями: пространственным протяжением, геометрической формой, движением тел и телец, — Аристотель, объясняя природу, приписывал каждому свойству материи мистического носителя.

Этот способ объяснения близок ребячьей манере рассуждения. (Может быть, поэтому он так и живуч?!) Почему сладко? Потому, что много сладости. Почему тепло? Потому, что много теплоты, и т. д.

Так объяснить можно все, что угодно, и никаких трудностей при этом не возникает. Как понять, что тела падают на землю?

Перейти на страницу:

Все книги серии Эврика

Похожие книги

100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука