Читаем Рентгеновы лучи полностью

Открытие Рентгена вызвало большой интерес. Многие учёные начали изучать новые лучи, стремясь выяснить их физическую природу.


Рис. 3. Разрядная трубка.



Рис. 4. Схема устройства электрической лампочки.


Одним из первых начал работать с неизвестными лучами знаменитый русский учёный, изобретатель радио, А. С. Попов, который построил первую в России оригинальную трубку для получения новых лучей. Первое время природа этих лучей казалась совершенно загадочной и необъяснимой. Именно поэтому их назвали сначала «Х-лучами» (икс-лучами), то-есть «неизвестными лучами». В настоящее время, однако, эти лучи принято называть рентгеновыми или рентгеновскими.

Современные рентгеновские трубки устроены несколько иначе, чем трубка, с которой работал Рентген.

Как же устроена и как работает современная рентгеновская трубка?

Для того чтобы лучше понять это, сравним её с обыкновенной электрической лампочкой, изображённой на рисунке 4.

Она состоит из стеклянного тонкостенного баллона (пузыря), к которому прочно прикреплён металлический колпачок, называемый цоколем. Внутри баллона в стеклянной ножке впаяны две проволоки, подводящие ток; они соединены металлической спиралью, которая изготовляется из тончайшей вольфрамовой проволочки. Вольфрам — это редкий и очень тугоплавкий металл. Он расплавляется только при температуре, превышающей 3 000 градусов. Из баллона электрической лампочки полностью выкачивается воздух, и после этого баллон запаивается. Для «зажигания» электрической лампочки нужно пропустить через неё электрический ток. Движение электрического тока по проводам напоминает течение жидкости по трубам, только по проводам течёт не жидкость, а передвигаются электроны, то-есть мельчайшие частицы, несущие на себе отрицательный заряд.

Обычно электроны находятся внутри атомов, из которых и состоят все окружающие нас тела. Внутри атомов электроны удерживает электрическая сила притяжения к положительно заряженному ядру атома. Но в некоторых веществах, например в металлах, атомы располагаются таким образом, что связь отдельных электронов с ядрами ослабевает, электроны становятся свободными, то-есть могут свободно передвигаться в металле между атомами.

Вот такие-то «свободные электроны» и образуют электрический ток в металле.

Тот проводник, по которому электроны притекают к вольфрамовой нити лампы, называется отрицательным, а тот, по которому они уходят прочь, — положительным.

Атомы металла не принимают участия в этом движении электронов вдоль проводника, они остаются на своих местах и образуют атомную решётку, остов проводника.

При своём движении по проводнику электроны сталкиваются с атомами решётки.

В результате этих многочисленных столкновений плавное движение потока электронов вдоль проводника нарушается. Отдельные электроны при ударе резко меняют направление своего движения. Возникает беспорядочное их движение по различным направлениям внутри металла.

Удары электронов раскачивают атомы, которые начинают колебаться, каждый около своего места в решётке.

Энергия колебаний атомов есть тепловая энергия, выделяющаяся при прохождении электрического тока по проводнику.

При обычной температуре электроны металла, свободно передвигаясь внутри него, не могут в то же время выбраться наружу. Атомы, потерявшие электроны, заряжены положительно, они притягивают обратно внутрь металла те электроны, которые попадают на поверхность.

Но при достаточно большой температуре скорости движения электронов настолько возрастают, что такие быстрые электроны оказываются способными преодолеть силы притяжения и вырваться из металла наружу.

Поэтому раскалённое тело, а в нашем случае — вольфрамовая нить, будет испускать во все стороны электроны.

Вокруг светящейся нити обыкновенной лампочки образуется обычно целое облачко из электронов, вылетевших из неё.


Рис. 5. Схема рентгеновской трубки.


Посмотрим теперь на рисунок 5. Здесь изображена схема устройства рентгеновской трубки.

В такой трубке также имеется раскалённая нить, испускающая электроны. Но в отличие от обыкновенной лампы вольфрамовая нить подсоединена к отрицательному проводу источника напряжения. В то же время положительный провод введён внутрь лампы в виде особого электрода, который называется анодом.

Положительно заряженный анод притягивает электроны, испущенные накалённой нитью (катодом). Поэтому вылетевшие из катода электроны уже не образуют электронного облачка около его поверхности, а устремляются к аноду. Им на смену раскалённая нить испускает новые. В такой лампе пойдёт электрический ток — поток электронов, с большой скоростью летящих от катода к аноду.

Для того чтобы нить всё время оставалась нагретой, используется специальный источник электрического тока, изображённый на рисунке 5.

Перейти на страницу:

Все книги серии Научно-популярная библиотека («Гостехиздат»)

Похожие книги

Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется
Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется

Если бы можно было рассмотреть окружающий мир при огромном увеличении, то мы бы увидели, что он состоит из множества молекул, которые постоянно чем-то заняты. А еще узнали бы, как действует на наш организм выпитая утром чашечка кофе («привет, кофеин»), более тщательно бы выбирали зубную пасту («так все-таки с фтором или без?») и наконец-то поняли, почему шоколадный фондан получается таким вкусным («так вот в чем секрет!»). Химия присутствует повсюду, она часть повседневной жизни каждого, так почему бы не познакомиться с этой наукой чуточку ближе? Автор книги, по совместительству ученый-химик и автор уникального YouTube-канала The Secret Life of Scientists, предлагает вам взглянуть на обычные и привычные вещи с научной точки зрения и даже попробовать себя в роли экспериментатора!В формате PDF A4 сохранен издательский макет.

Нгуэн-Ким Май Тхи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Педагогика / Образование и наука
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии