Читаем Рентгеновы лучи полностью

Так устроены рентгеновские трубки. Источником рентгеновых лучей является анод, бомбардируемый потоком быстрых электронов. В рентгеновских трубках электроны двигаются с большой скоростью, вс много раз превышающей скорость пушечного снаряда. Если бы электрон с такой скоростью пустить двигаться вокруг Земли, он совершил бы кругосветное путешествие меньше, чем за секунду.

Поверхность анода рентгеновской трубки во время её работы подвергается непрерывному обстрелу электронами, текущими с катода. Подобно тому как при ударах молота о металл металл разогревается, разогревается и поверхность анода рентгеновской трубки, особенно тот участок, который обстреливается электронами. В этом месте, называемом фокусным пятном, металл может даже частично проплавиться. Тут-то, как обнаружил Рентген, и зарождаются помимо выделяющегося тепла рентгеновы лучи. Они распространяются от фокусного пятна во все стороны.

Мы знаем теперь, что рентгеновы лучи возникают, когда быстро летящие электроны, сталкиваясь с атомами вещества, теряют при этих столкновениях свою энергию. Часть энергии электрона идёт при этом на раскачку атомов вещества, то-есть на повышение его температуры, а часть энергии испускается в виде рентгеновых лучей, в виде лучистой энергии.

Всякий раз, когда электрон движется с ускорением или замедлением, он испускает электромагнитные волны. Чем больше ускорение или замедление электрона, тем короче длина испускаемых электромагнитных волн.

Как теперь установлено, видимый свет также испускается электронами, колеблющимися внутри атомов.

Быстрый электрон, ударяясь о поверхность анода, почти сразу останавливается. В этом случае очень велико торможение электрона, а потому испускаемые при этом электромагнитные волны — рентгеновы лучи — обладают длиной волны примерно в 1 000 раз меньшей, чем длина волны видимого света.

Чем быстрее двигался электрон перед ударом, тем большая потеря скорости произойдёт, тем короче длина волны рентгеновых лучей.

Но скорость электрона зависит от того электрического напряжения, которое приложено между катодом и анодом, именно это напряжение и ускоряет электрон [3]).

Поэтому в зависимости от того, какое напряжение приложим мы к рентгеновской трубке, мы будем получать различные лучи. Меньшее напряжение даёт нам мягкие лучи (более длинные волны), а большее — жёсткие лучи (волны более короткие).


Рис. 6. Внешний вид рентгеновской трубки.


На рисунке 6 показана рентгеновская трубка, применяемая в медицинских рентгеновских кабинетах. Она состоит из стеклянной трубки, длиною около 70 сантиметров. Средняя часть трубки раздута в виде шара. Внутрь её впаяны с одной стороны — катод (обозначен буквой К) (вольфрамовая проволока), с другой стороны — анод — (А). Катод, обычно оканчивающийся цоколем, как у электрической лампочки, имеет подводящий ток проволоки и вольфрамовую спираль, более толстую, чем в обычной лампочке. Анод и катод рентгеновской трубки соединены с источником электрического напряжения. Спираль катода нагревается с помощью отдельного вспомогательного источника тока.

Для работы рентгеновской трубки не годится широко используемый в быту и на производстве ток низкого напряжения. Его напряжение 120 или 220 вольт (вольт — единица измерения напряжения).

Чтобы привести в действие рентгеновскую трубку, нужен ток с напряжением в 50 000–200 000 и более вольт, то-есть ток очень высокого напряжения. Для преобразования тока низкого напряжения в высоковольтный ток применяются специальные приборы, называемые электрическими трансформаторами [4]).


Рис. 7. Общий вид рентгеновской установки.


От трансформатора высокое напряжение подаётся к рентгеновской трубке или с помощью металлических проводов — шин, укреплённых на достаточное расстоянии от потолка с помощью специальных изоляторов, или по специальному высоковольтному кабелю.

Общий вид современной рентгеновской установки с рентгеновской трубкой в защитном чехле — кожухе показан на рисунке 7.

Открытые в конце прошлого века лучи Рентгена получили в наше время широкое распространение. В Советском Союзе имеется многочисленная сеть рентгеновских установок и рентгеновских кабинетов — в больницах, госпиталях, научных учреждениях, ветеринарных лечебницах и на заводах. В Москве, Ленинграде и других крупных центрах нашей страны организованы специальные рентгеновские институты.

В этих институтах проводится глубокое изучение природы рентгеновых лучей, а также методов их использования.

При исследовании рентгеновых лучей сразу встаёт вопрос об их обнаружении. В самом деле, каким образом наблюдают невидимые лучи?

Для этого используют различные их свойства. Одно из свойств рентгеновых лучей состоит в том, что они вызывают свечение некоторых химических веществ. Ведь именно благодаря этому свойству Рентген и открыл эти лучи.

Перейти на страницу:

Все книги серии Научно-популярная библиотека («Гостехиздат»)

Похожие книги

Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется
Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется

Если бы можно было рассмотреть окружающий мир при огромном увеличении, то мы бы увидели, что он состоит из множества молекул, которые постоянно чем-то заняты. А еще узнали бы, как действует на наш организм выпитая утром чашечка кофе («привет, кофеин»), более тщательно бы выбирали зубную пасту («так все-таки с фтором или без?») и наконец-то поняли, почему шоколадный фондан получается таким вкусным («так вот в чем секрет!»). Химия присутствует повсюду, она часть повседневной жизни каждого, так почему бы не познакомиться с этой наукой чуточку ближе? Автор книги, по совместительству ученый-химик и автор уникального YouTube-канала The Secret Life of Scientists, предлагает вам взглянуть на обычные и привычные вещи с научной точки зрения и даже попробовать себя в роли экспериментатора!В формате PDF A4 сохранен издательский макет.

Нгуэн-Ким Май Тхи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Педагогика / Образование и наука
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии