Сейчас трудно говорить о том, к каким практическим результатам приведут эти еще не хоженые сегодня пути органической химии, но они могут быть еще более грандиозными, чем все то, о чем я уже говорил. В овладении секретами хлорофиллового зерна, внутриклеточных превращений веществ в живом организме, может быть, таится технология будущих заводов искусственных пищевых продуктов, которые будут далеко превосходить по качеству, целесообразности состава и усвояемости сегодняшние естественные продукты. Люди тогда найдут способ использовать солнечную энергию гораздо производительней, чем посредством растений.
Паутинка, заменяющая канат
Материалы будущего…
В одном из романов знаменитого английского фантаста Герберта Уэллса рассказывается о веревочной лестнице, канаты которой были не толще паутины. Между тем они выдерживали вес нескольких человек одновременно, и, казалось, разорвать их невозможно.
Что это было? Сплав удивительной прочности? Необыкновенное искусственное волокно? Писатель не дал ответа на этот вопрос. Взглядом художника, а не инженера видел он будущее.
— Вероятно, паутинки уэллсовской лестницы были сделаны из, чистого железа, — сказал нам член-корреспондент Академии наук СССР Иван Августович Одинг, большой специалист в области прочности металлов. — Да-да, из чистого железа.
— Простите, но ведь чистое железо — это мягкий, податливый, пластичный металл, — возразили мы. — Временное сопротивление разрыву у него едва-едва достигает 20 килограммов на квадратный миллиметр. Чистое железо значительно менее прочно, чем сталь. Ведь именно сталь идет на самые ответственные, самые нагруженные детали машин и механизмов, а не чистое железо.,
— Да, вы правы, — ответил, улыбнувшись, ученый. — Но дело значительно сложнее. Для того чтобы разобраться в нем глубже, оглянемся назад.
Знаете ли вы, что все те машины, с которыми мы имеем дело сегодня, было бы невозможно построить, если бы их создатели располагали только материалами, существовавшими в начале нашего века? Что был бы невозможен не только реактивный самолет и газотурбинный двигатель, но что и обычный автомобильный мотор оказался бы раза в два-три тяжелее сегодняшнего? А это именно так.
В те дни, когда я еще был студентом — это совпало с годами первой мировой войны и Великой Октябрьской революции, — чугун имел прочность всего около 8 килограммов на квадратный миллиметр. Хорошие заводы гарантировали 10 килограммов на квадратный миллиметр.
А сегодня чугун выдерживает 70–80 килограммов на квадратный миллиметр.
Легкие сплавы в те времена тоже имели пределом прочности 6–7 килограммов на квадратный миллиметр.
А современные сплавы алюминия позволяют доводить нагрузку до 55–60 килограммов на квадратный миллиметр. Грубо говоря, нам, металловедам, удалось повысить за эти годы прочность металлов, имеющих коренное значение в машиностроении, примерно в 8—10 раз.
Это грандиозная победа. Вот цифры, которые позволяют представить ее величественные результаты.
Вес двигателя внутреннего сгорания на одну лошадиную силу в 1900 году составлял 250 килограммов. Сегодня вес авиационного дизеля на одну лошадиную силу не достигает и килограмма!
Вес пароэлектрического агрегата электростанции на одну лошадиную силу снизился по сравнению с началом века, когда он достигал примерно 150 килограммов, до 4–5 килограммов!
Казалось бы, успех колоссальный. Он был достигнут двумя основными путями: во-первых, легированием металла, то есть добавлением в его состав незначительных в процентном отношении упрочняющих присадок; и, во-вторых, разработанной системой термообработок, вызывающих выгодные для нас изменения в кристаллической структуре материалов. Оба из этих путей не пройдены еще до конца ни наукой, ни практикой. Дальнейшее упрочение, повышение качества металлов будет достигаться и за счет новых присадок, и за счет новых методов механической и термической обработок. И, вероятно, идя по этим путям, мы сможем в течение ближайшего десятилетия поднять прочность стали от 200 килограммов на квадратный миллиметр, уже достигнутых сегодня, до 300 килограммов на квадратный миллиметр. Если быть оптимистичным, можно ожидать, что будут достигнуты и 400 килограммов на квадратный миллиметр. Ну, а где же тот верхний предел прочности металла, к которому мы можем стремиться?
Этот предел указали физики. Они определили величины межатомных связей. И по их теоретическим расчетам оказалось, что прочность простых чистых металлов должна быть в тысячи раз выше тех, которые мы сегодня считаем своим предельным блистательным достижением.
В тысячи раз! Представляете себе?! Не в два, не в десять, а в тысячи раз! Вот она — паутинка, которая выдержит вес десятка людей! Вот они — мосты, фермы которых похожи на кружево, башни телевизионных центров в десятки километров высотой, воистину почти невесомые самолеты.