Листая страницы научно-фантастических романов, рассматривая иллюстрации в них, я всегда удивлялся массивности изображаемых машин и сооружений. И писатели и художники стремились их сделать величественными. А ведь в будущем вероятнее всего ожидать сверхлегкие пластмассовые дома, крохотные, но очень мощные и производительные машины, ажурные, кружевные Мосты. И на рисунках они должны быть такими, чтобы у меня, человека, всю жизнь проработавшего над вопросами прочности, голова кружилась при одной мысли о необходимости вступить на такой мост.
Непосвященных людей, да нередко и посвященных, прямо-таки гипнотизируют величественные цифры веса многих наших машин и сооружений. Миллионы кубометров бетона, сотни тысяч тонн стальных конструкций, десятки или сотни тонн веса той или иной машины. Совсем еще недавно было время, когда мы выпуск, например, паровых котлов заводом измеряли не в сотнях тысяч тонн их паропроизводительности, не в штуках даже, а в весе металла, который пошел на их производство. Ну и старались, конечно, изготовители «вогнать» в эти паровые котлы как можно больше металла, чтобы были повыше цифры, побольше выполнение плана. А ведь эти цифры — вопль о низком состоянии техники.
Надо, во всех случаях надо, что бы ни создал инженер — самолет или паровой котел, гидроэлектростанцию или гидравлический пресс, автомобиль или телевизор, — важнейшей характеристикой машины считать отношение веса ее к единице производительности. И только если это отношение оказывается ниже, чем у аналогичных уже существующих машин, считать машину новым словом в технике… Но мы отвлеклись…
Как же согласовать теоретическую прочность металла с ее практической прочностью? Почему между ними существует такой гигантский разрыв? Почему еще невозможно осуществление уэллсовской лестницы?
Лет двадцать— двадцать пять назад два ученых — английский физик Тэйлор и член-корреспондент нашей Академии наук Я. Н. Френкель — независимо друг от друга пришли примерно к одинаковому мнению по этому вопросу. «В металле, его кристаллической структуре, есть определенные несовершенства, структура их действительная не соответствует теоретической. Эти несовершенства и являются причиной их низкой прочности». Примерно таким был их вывод.
Попробуем разъяснить это следующим примером. Представьте себе комнату, заполненную футбольными мячами так, что их центры образуют вершины куба. Допустим, что мячи будут лежать не строго равномерно: в их расположении будут пропуски, места смещений и другие искажения точно математической укладки. Видимо, нечто подобное происходит и в кристаллической решетке металлов. В большинстве случаев металлы кристаллизируются в кубической системе, то есть атомы располагаются по углам куба. Определенные несовершенства в их укладке и вызывают катастрофическое падение прочности металла.
Сколько споров было вокруг этой гипотезы! Одни ее признавали, другие считали ересью. Но факты неумолимо подтверждали ее соответствие истине. Прежде всего совпала расчетная прочность металла, — если учесть имеющиеся в нем определенного вида несовершенства, их назвали дислокациями, — с той прочностью, которую мы имели в действительности. А затем этот затянувшийся спор в науке судом фактов, как всегда, был решен в пользу истины. Огромную роль при этом сыграли свидетельские показания электронного микроскопа. Дислокации, которые объявлялись несуществующими, а гипотеза о их существовании — слишком искусственной, удалось увидеть и даже заснять на кинопленку.
Дальнейшие, исследования выявили примерно такую картину. Дислокации получаются в металле в первые же мгновения его затвердевания з литейной форме. Оказывается, кристаллизация из расплава с образованием дислокаций идет с меньшей затратой энергии, чем без дислокаций. А затем, при дальнейшей обработке — ковке, прокатке, волочении металла — мы увеличиваем количество этих дислокаций.
Интересна и еще одна особенность. Минимальную прочность металл имеет при совершенно определенном количестве этих дислокаций. Если мы увеличим их количество — это происходит, например, при прокатке, — металл становится прочнее. Чем больше дислокаций — тем прочнее металл. Вот по этому пути — увеличения числа дислокаций — и шли наука и практика металлургии в последние десятилетия, не предполагая о существовании дислокаций.
Но от этого минимума прочности есть и другой путь к упрочению металла — уменьшение числа дислокаций. И этот путь гораздо эффективнее. Именно он может обеспечить нам создание материалов невероятной прочности.
Кстати, первые образцы такого материала без дислокаций уже получены. Правда, это пока лабораторные образцы, крохотные столбики чистого железа, выдерживающие растяжение не в 20 килограммов на квадратный миллиметр, как наше сегодняшнее «чистое» железо, а 1400 килограммов на квадратный миллиметр. Это почти фантастическая прочность, приближающаяся уже к той, которую предсказывают физики-теоретики.