Однажды я создал хорошую модель с использованием стандартного темпа затухания. Однако мне пришло в голову посмотреть, что будет, если я изменю свои предположения насчет темпа затухания и запущу модель заново. Я был поражен, когда получил по-прежнему статистически значимые оценки параметров, а у модели по-прежнему доставало объяснительной силы. Но при этом новые оценки параметров расходились с предыдущими оценками больше, чем допускали пределы ошибки. Стало понятно, что наличия хорошей модели и статистически значимых параметров было недостаточно для доказательства правильности исходных предположений. И, мало того, мои предположения о темпе затухания влияли на результаты больше, чем сама модель. Мы с моей командой приложили массу усилий, чтобы окончательно определить максимально точные, на наш взгляд, предположения. Тем не менее мне и по сию пору становится не по себе от мысли о том, что предположения способны настолько радикально повлиять на результаты анализа.
При создании аналитического процесса делается много предположений, причем вероятность того, что все они будут абсолютно точными, крайне низка. Полезно оценивать, как изменяются результаты, по мере того как варьируются фактические значения под влиянием предположений в правдоподобном диапазоне. Это позволяет лучше понять сопряженные с анализом риски.
Далеко не всегда все разумные предположения будут приводить к одинаковому ответу. В некоторых ситуациях один набор разумных предположений даст положительный результат, тогда как другой набор – отрицательный. В таких случаях необходимо прийти к согласию относительно заключительного предположения и оценить риски, связанные с возможной ошибкой. Когда разные предположения ведут к разным ответам, разумно использовать для подстраховки наиболее консервативные предположения. Анализ чувствительности для оценки влияния предположений не устраняет риски, а просто позволяет измерить их количественно и лучше их осознать. Хорошим инструментом для такой оценки предположений служит моделирование по методу Монте-Карло.
Делайте ваши ставки!
Как мы увидели во второй главе, хотя затраты на сбор и хранение данных снизились, но по крайней мере столь же быстро растут объемы данных и аналитические потребности организаций. Сегодня существует такое широчайшее разнообразие аналитических возможностей, что порой это приводит в замешательство. Все решения о том, где следует сделать ставки, должны быть основаны на надежном суждении. Причем в отношении больших данных и операционной аналитики оно должно быть не менее надежным, чем в прошлом. Ведь чем больше появляется данных и во все более разнообразных сочетаниях, тем проще пойти по ложному пути. Или же можно наткнуться на ложные корреляции, которые не имеют никакого отношения к реальности.
Например, при построении статистических моделей можно угодить в стандартную ловушку ввиду того, что многие модели устанавливают меру доверия к своим оценкам значений параметров. Общепринятый стандарт требует по крайней мере 99 %-ного уровня доверия к тому, что эффект действительно существует, а не является чисто случайным совпадением. Когда тестируется всего несколько факторов, шансы на успех невелики и, вполне вероятно, что некая абсолютная фальшивка будет признана статистически значимой. Но подумайте о петабайтах сенсорных данных, генерируемых современным самолетом. Возможно, появятся тысячи или даже десятки тысяч метрик, способных коррелировать с такими событиями, как перегрев двигателя. Если при исследовании 20 000 факторов устанавливается уровень доверия в 99 %, то можно ожидать, что 200 совершенно ложных факторов будут признаны статистически значимыми.
Необходимо решить, какие метрики должны быть включены в анализ, чтобы оставить из них только разумные. Но даже после такой фильтрации может остаться множество метрик, которые будут приводить к выявлению ложных эффектов. После построения модели требуется осуществить дополнительный анализ для проверки реальности обнаруженных эффектов. Оценке должен подвергаться весь процесс.
Не спешите выносить приговор