Во-первых, необходимо посмотреть, какие совершенно новые и различные проблемы могут быть решены при помощи новой информации. Это кажется очевидным, однако люди с легкостью попадают в привычную колею и просто используют данные для решения обычных проблем. Организация должна сделать акцент на поиске новых возможностей для применения данных. Во-вторых, нужно попробовать найти новые, лучшие способы решения старых проблем. Для этого необходимо изучить проблемы, уже считающиеся преодоленными, и подумать, можно ли подойти к ним совсем с другой стороны за счет внедрения новых данных. Это позволит глубже вникнуть в проблему{16}
.Одной из полезных концепций для осуществления подобной деятельности в контексте клиентских данных является стратегия динамического управления отношениями с клиентами, описанная Джеффом Тэннером в книге «Стратегия динамического управления отношениями с клиентами: Большая прибыль от больших данных» (Dynamic Customer Strategy: Big Profits from Big Data){17}
. Она может послужить хорошим подспорьем для читателей, интересующихся заявленной темой.С тем, как искать новые проблемы, должно быть все понятно, поэтому давайте рассмотрим пример того, как можно использовать большие данные для поиска новых способов решения старых проблем. В сфере здравоохранения клинические испытания служат золотым стандартом, а в их составе заключительный тест и управляющая конструкция выполняются посредством так называемого двойного слепого метода, когда ни пациенты, ни врачи не знают, кто какое лечение получает. Это исследование проводится в строго контролируемых условиях и позволяет с высокой точностью определить положительные и отрицательные эффекты тестируемых процедуры или препарата. Однако, после того как на их разработку были потрачены сотни миллионов долларов и многие годы исследований, клинические испытания в лучшем случае охватывают от 2000 до 3000 человек. Такой размер выборки недостаточен. И это означает, что хотя клинические испытания позволяют очень точно измерить показатели согласно пожеланиям исследователей, но попросту не хватит данных для того, чтобы выявить весь спектр непредвиденных последствий.
К чему ведет такая ограниченность выборки? К ситуациям наподобие тех, что случились несколько лет назад, когда применение многих препаратов-анальгетиков из класса ингибиторов ЦОГ-2, в том числе Vioxx и Celebrex, обернулось неприятностями. Исследователи обнаружили, что эти препараты в два – четыре раза повышают вероятность развития сердечных заболеваний по сравнению с нормой{18}
. А ведь проблема не была выявлена в ходе первоначальных клинических испытаний, и прошло несколько лет после выведения препаратов на рынок, прежде чем ее определили.Когда вы находите новые данные, содержащие новую информацию, обязательно вернитесь к былым проблемам. Довольно часто оказывается, что проблему, уже считающуюся решенной, можно решить гораздо эффективнее, если использовать новую информацию и подойти к проблеме с другой стороны.
Теперь давайте перенесемся немного вперед. Можем ли мы повысить точность клинических испытаний при помощи больших данных, даже если они собираются за пределами контролируемой среды? В ближайшем будущем детальная электронная медицинская документация станет нормой. Благодаря этому после выпуска препарата на рынок можно будет отслеживать его действие на тысячах, сотнях тысяч или миллионах людей, которые начнут его использовать. А также проанализировать действие препарата при любых комбинациях болезней, которыми страдают использующие его пациенты, и в комбинациях с любыми другими препаратами и методами лечения, применяемыми одновременно с ним. Люди же, использующие препарат не по назначению и наряду с противопоказанными лекарствами, останутся за рамками клинических испытаний.