В самом деле, мы часто встречаемся с целыми числами в тех разделах физики, где рассматриваются волны: в теории упругости, акустике, оптике. Они появляются при описании стоячих волн, интерференции, резонанса. Поэтому вполне допустимо предположить, что интерпретация условий квантования может привести к волновой точке зрения на электроны внутри атома. Таким образом, попытаться приписать электрону или вообще всем частицам, подобно фотонам, двойственную природу, наделить их волновыми и корпускулярными свойствами, связанными между собой квантом действия, – такая задача представлялась крайне необходимой и плодотворной.
2. Частица и волна, связанная с ней
В чем же в основном заключалась задача? По существу в установлении определенного соответствия между распространением некоей волны и движением частицы, причем величины, описывающие волну, должны быть связаны с динамическими характеристиками частицы соотношением, которое содержит постоянную Планка
Прежде чем приступить к решению этой задачи, было естественно рассмотреть самый простой случай: задачу о равномерном и прямолинейном движении частицы с заданными постоянными значениями энергии и импульса. Из соображений симметрии следовало сопоставить ей волну, распространяющуюся в том же направлении. Теперь оставалось только определить, как связаны между собой частота и длина этой волны с динамическими характеристиками частицы. Аргументы, основанные на общих принципах теории относительности, приводят к следующему результату: частота волны, связанной с движущейся частицей, равна энергии частицы, деленной на постоянную Планка, а длина волны – частному от деления постоянной Планка на импульс частицы. Такая связь между частицей и соответствующей ей волной обладает еще и тем большим преимуществом, что она в точности совпадает с соотношением Эйнштейна для фотона и световой волны. Так был осуществлен знаменитый синтез, ибо оказалось, что для частиц материи и для света установлен один и тот же вид дуализма.
Есть еще один, совершенно независимый путь, который ведет к такому же способу установления связи между частицей и соответствующей ей волной. Мы уже говорили, что теория Якоби очень прозрачно намекает на идею о сходстве траекторий частиц с лучом некоей волны, отождествляя интеграл действия частицы с волновым интегралом Ферма, так что принцип наименьшего действия совпадает с принципом минимального времени. Если выполнить эту операцию, то мы снова тут же находим, что, с одной стороны, энергия пропорциональна частоте, с другой стороны, импульс обратно пропорционален длине волны. Остается только положить коэффициент пропорциональности равным