Почти все признают, что мозг все же устроен немного сложнее, чем любой известный компьютер (ведь, в конце концов, все компьютеры – это порождение человеческого мозга), даже если последний обыгрывает чемпионов мира по шахматам и го. Но это скорее вопрос количественный, чем принципиальный. Квантовый компьютер его уже точно решит. Однако такая удобная экстраполяция на самом деле основана на совершенно неверной посылке. Дело не в том, что мозг – это не какой-то компьютер побольше и посложнее; в его основе вообще едва ли есть что-то общее с его кремниевым двоюродным лжебратом. У него совершенно иной базовый принцип, который поэтому не поддается экстраполяции и масштабированию. В конечном счете это имеет решающее значение для понимания сущности мозга и определяет последствия тех ошибок, которые вытекают из неверной аналогии.
В основе компьютера, каким мы его знаем, лежит стандартная архитектура, и сердце ее – ЦП, центральный процессор. «Шина» на короткое или продолжительное время передает информацию в виде двоичного кода между ЦП и различными накопителями. Сегодня существуют компьютеры, в которых параллельно работает более одного процессора. Развитие идет в этом направлении. Но работа мозга целиком состоит из параллельных процессов, и при этом центрального процессора у него вообще нет. Он
Но самое главное то, что архитектура компьютера и его микросхем жестко задана заранее. Она не умеет приспосабливаться. В мозге же происходит именно это, и таков важнейший функциональный принцип. Деятельность мозга всегда сопряжена с изменениями его микроструктуры. Сеть связей, которую образуют нейроны, находится в постоянном течении. Нельзя сказать, что может фундаментально изменяться базовая структура мозга, но чем подробнее ее рассматриваешь, тем больше понимаешь, насколько изменчивы связи в ней.
Микроархитектура компьютеров, напротив, не изменяется в результате обучения. В ней нет пластичности. Подобного взаимодействия структуры и формы не происходит. Электрическая схема, в отличие от мозга, не подстраивается под потребности в зависимости от деятельности или ее отсутствия.
Из-за этой фундаментальной разницы компьютер не годится в качестве модели мозга. Невзирая на всю свою мощь, он (как и компьютерные программы) до смешного несовершенен, что постоянно вызывает у нас раздражение; но отсюда все по той же причине не следует делать вывод, что эти ограничения свойственны и мозгу. У мозга свои рамки, опять же часто незнакомые компьютеру. Даже деменция – это не сбой процессора. При болезни и нейродегенеративных заболеваниях по-прежнему сохраняется пластичность. У млекопитающих ее полное отсутствие несовместимо с жизнью. Через аналогию с компьютером множество вопросов о мозге не поддаются объяснению, просто потому, что картина искажена. А новые нервные клетки в нее вообще никак не вписываются. Добрая часть скепсиса, который вызвало понятие нейрогенеза взрослых, связана с тем, что оно не сочетается с определенными представлениями о принципе действия мозга (причем неверными).
Пластичность
В биомедицине «пластичность» – довольно сложное, неоднозначное понятие, поскольку в отдельных научных дисциплинах оно используется совершенно по-разному. Это быстро вызывает путаницу. Данный термин уже несколько раз встречался в нашей книге, и я всегда подчеркивал его многогранность. Но уже давно пора подробнее рассмотреть эту центральную тему.
Здесь (как и во многих областях нейронауки) под пластичностью мы понимаем двустороннее взаимодействие структуры и функции. Итак: функция определяется структурой (как автомобиль, который функциональными свойствами обязан своей конструкции), а структура следует за функцией. Второго, к сожалению, с автомобилем не происходит: если посильнее разогнаться на «трабанте», он сам собой не превратится в «феррари», чтобы лучше справиться с поставленной перед ним задачей. Таким образом, пластичность представляет собой «итеративный процесс»: сигналы обратной связи чередуются с эпизодами приспособления, благодаря чему возможна оптимизация.