Все, что мы до сих пор узнали о новых нервных клетках, говорит о том, что они «как-то» связаны с обучением. История началась с разучивания песен у канареек, и наши мыши в обогащенной среде ее еще далеко не заканчивают. Ученых в нашей области давно уже волнует следующий большой вопрос: в чем именно функция новых нервных клеток? Нейрогенез взрослых долго считали пережитком эволюции, своего рода «птицей в каждом из нас» или «аппендиксом» мозга. Но становилось все более ясно, что это явление, в первую очередь в гиппокампе, как-то связано у нас с процессом обучения.
Обучение означает накопление опыта и, как следствие, способность прогнозировать. Джефф Хокинс, изобретатель электронной записной книжки Palm Pilot, вовремя вышел из дела и вернулся к исследованиям мозга, пока управление не перехватила Apple с ее карманными устройствами. Он сформулировал общее определение функции мозга в своей великолепной книге «Об интеллекте» (On Intelligence): по его словам, мозг – это запоминающее устройство плюс способность прогнозировать.
Если мы учимся, в будущем у нас что-то получается лучше. Что именно здесь значит «лучше», не всегда легко понять, но, обучаясь, мы как минимум не хотим повторять одни и те же ошибки. Это подразумевает способность сделать надежный прогноз того, что может произойти в жизни в следующий момент. Нам нужно постоянно учиться на опыте. Прогнозы и ожидания здесь не обязательно должны быть осознанными, отчасти их вполне можно понимать метафорически. В любом случае подробности пока неизвестны. Но основная идея очень понятна. Обучаясь, мы приспосабливаемся к обстоятельствам. Это пластичность, с которой мы познакомились в четвертой главе.
Для мозга обучение означает нечто большее, чем переключение нескольких битов с 0 на 1 или обратно. С нейробиологической точки зрения обучение почти равнозначно пластичности. Этот процесс подразумевает структурные изменения в мозге. Они происходят преимущественно на уровне контактов между нейронами, синапсов. Но отростки нервных клеток тоже пластичны и могут изменять сеть связей. Нейрогенез взрослых – это редкий частный случай, когда в сети не только появляются новые или укрепляются имеющиеся связи, но и возникают новые узлы.
В этой главе мы будем заниматься исключительно функцией новых нервных клеток в гиппокампе (отчасти потому, что о нейронах гиппокампа нам известно больше всего). О функции новых нервных клеток в обонятельной луковице мы, напротив, знаем очень мало, а в полосатом теле – вообще ничего. Какова же их роль в деятельности мозга в других зонах нейрогенеза, которых так много у некоторых животных, можно только предполагать. С другой стороны, значение нейрогенеза взрослых в гиппокампе неоспоримо. У нас есть основания сосредоточиться на этой зоне – вратах памяти.
В других областях еще многое предстоит выяснить, и можно не сомневаться, что нейрогенез взрослых в целом принесет много неожиданностей. А мы для начала займемся неожиданностями в гиппокампе.
Первая попытка объяснить функцию новых нервных клеток
Первый выстрел в вопросе о том, для чего могут быть нужны новые нейроны в гиппокампе, опять сделала Лиз Гульд. Ее совместная работа с коллегой Трейси Шорс из Принстонского университета, куда Гульд к тому времени перешла, была опубликована в 2000 году и вначале вызвала большое смятение.
Чтобы узнать, что делают новые нервные клетки, нужно нейтрализовать их действие и посмотреть, что останется от обучения и памяти. Вряд ли кто-то предполагал, что новые нейроны – это память сама по себе. Для этого клеток было слишком мало, а их расположение на входе в гиппокамп казалось не очень подходящим. Но что тогда? Все усложнялось тем, что исследованиями зубчатой извилины не то чтобы совсем пренебрегали, но внимания им уделяли значительно меньше по сравнению с другими участками гиппокампа, в первую очередь с CA1.
Дискуссию вызвало не только то, что Гульд и Шорс использовали метод с довольно сильными побочными эффектами, с помощью весьма жесткого химиотерапевтического средства блокировав в гиппокампе крыс деятельность стволовых клеток и тем самым нейрогенез взрослых. Помимо этого, в качестве функции для исследования они выбрали выработку условного мигательного рефлекса. Иными словами, исследовательницы применили не что иное, как основной научный метод бихевиоризма: в процессе выработки условного рефлекса индивид учится связывать между собой два стимула таким образом, что впоследствии одного из них достаточно, чтобы наступила реакция, которую исходно вызывал только другой. Для этого использовали мигательный рефлекс. Крысы слышали звук, сразу за ним следовал короткий порыв сквозняка, из-за чего крыса моргала. Через некоторое время, чтобы крыса моргнула, стало достаточно одного звука. В принципе, то же самое происходит, если вы научились жмуриться при одной только угрозе удара в литавры, а не тогда, когда это уже действительно произошло.