В рамках макроскопической физики, рассматривающей планеты, горы и песчинки, такие процессы невозможно наблюдать, потому что величина h крайне мала; так что волна, связанная с макроскопическим объектом, ничтожна. Например, для теннисного мячика, запущенного со скоростью 200 км/ч, длина волны де Бройля составляет порядка 10-34 м, то есть она бесконечно мала по сравнению с атомным ядром. Однако у электрона атома водорода длина волны приблизительно равна размеру атома, поэтому можно полагать, что волновые эффекты не проявят себя во время партии в теннис, но будут заметны в атомной динамике. На самом деле допустимые орбиты атома по Бору имеют простое объяснение с точки зрения волнового процесса: это такие орбиты, в длину которых укладывается целое число волн де Бройля и которые позволяют, как мы видим на схеме, формировать стоячие волны.
Используя передовые физико-математические методы XIX века, Шрёдингер предложил уравнение для всех волн материи. В серии статей, опубликованных в 1926 году, ученый доказал, что волновое уравнение и его решение, функция волны, применимы к нахождению энергетических уровней гармонического осциллятора и атома водорода. Также он смог доказать математически, что его формулировка и формулировка Гейзенберга математически эквивалентны.
Эйнштейн и Планк с воодушевлением приняли уравнение Шрёдингера. Его методы были ближе к физико-математической традиции, в которой выросли Эйнштейн и Планк, чем абстрактный подход Гейзенберга и Борна. В одном из писем Планк пишет Шрёдингеру, что читает его статью «с тем же напряжением, с каким любопытный ребенок выслушивает развязку загадки, над которой он долго мучился».
После того как Планк в 1927 году ушел на пенсию и оставил Берлинский университет, он предложил в качестве своего преемника Шрёдингера, который в то время был профессором в Цюрихском университете. Шрёдингер принял это предложение, так как Цюрих не мог соперничать с Берлином ни с экономической (предлагаемое жалование было вдвое больше), ни с научной точки зрения (профессорами в Берлинском университете были Эйнштейн и Макс фон Лауэ, рядом находился институт, в котором Ган и Мейтнер занимались передовыми разработками по ядерной физике, Нернст руководил Институтом экспериментальной физики, недалеко были Борн — в Гёттингене и Гейзенберг — в Лейпциге). И все же главной причиной, побудившей Шрёдингера принять это решение, было иное. Он сам признавал в стихотворении, посвященном Планку:
«Решили всё слова. Не длинный ряд
Велеречивых просьб и увещаний.
Нет, те слова, что вы тогда сказали,
Сказали, будто вскользь:
«Я буду рад!»
Между четой Шрёдингеров и Планками возникла крепкая дружба, которая продолжалась, невзирая на войну и расстояние.
Принцип неопределенности
После открытия матричной и волновой механики физики получили два эквивалентных инструмента, позволявших браться за решение любой квантовой проблемы. Матричная механика Гейзенберга и волновое уравнение Шрёдингера давали возможность выделять и решать любые проблемы атомной и молекулярной физики. Хотя все были согласны с тем, что квантовая механика, наконец, обрела теоретические принципы, от которых можно было оттолкнуться и которые были относительно независимы от классической науки, в течение нескольких лет шли напряженные споры об их интерпретации. В этих дебатах участвовали все, кто имел отношение к строительству нового здания квантовой физики: Планк, Эйнштейн, Бор, Зоммерфельд, Гейзенберг, Шрёдингер, Борн, Паули, Дирак. Макс Борн, профессор физики в Гёттингене, тесно сотрудничавший с Гейзенбергом, предложил следующую интерпретацию: картина функционирования волны обеспечивает вероятность попадания электрона в заданную точку пространства. Вокруг этой интерпретации Борна сплотилось большинство ученых, возглавляемых Нильсом Бором, эта точка зрения предполагала радикальный философский разрыв с классическим наследием, так как в центр физической концепции природы ставила случай, отринув детерминизм. В другом лагере, который можно назвать консервативным, остались Эйнштейн, Шрёдингер и Планк, их не до конца удовлетворяла вероятностная интерпретация и не прельщал полный отход от классического детерминизма.
Гейзенберг, принцип неопределенности
Ключевым элементом в дискуссии был принцип неопределенности, сформулированный Гейзенбергом в 1927 году.
В то время Гейзенберг работал в Копенгагене с Бором, с которым поддерживал тесные дружеские отношения. Статья, в которой был представлен принцип неопределенности, называлась «О наглядном содержании квантовотеоретической кинематики и механики», в ней этот принцип выводился из одного из фундаментальных выражений матричной механики.