Кривая безразличия – это множество портфелей, обладающих свойствами доходности и риска, полностью описываемыми величинами r и s, одинаковых для инвестора с точки зрения его предпочтения – инвестиционного выбора. Кривая безразличия положительно наклонена, так как считается, что больший риск должен компенсироваться большей доходностью. Аналогичный подход используется в теории полезности.
Кривые безразличия не пересекаются. Между любыми двумя можно нарисовать третью. Для инвестора лучше, когда наш портфель оказывается левее и выше на приведенном рисунке, потому что при таком смещении либо увеличивается доходность, либо уменьшается риск, либо то и другое одновременно; поэтому кривая безразличия, расположенная левее и выше, предпочтительнее для инвестора.
Пусть:
N – количество активов,
x1
, …, xN –доли активов в портфеле,Тогда доходность портфеля, rp
, исходя из определения доходности, естьОтсюда, очевидно, что ожидаемая доходность портфеля определяется формулой
Соответственно, для s получается, что риск портфеля есть
– коэффициент корреляции между доходностями
Таким образом, риск5
портфеля sp2 будет отличаться от средневзвешенной суммы рисков каждой из входящих в него ценных бумаг на слагаемое,
содержащее коэффициенты корреляции. Коэффициенты корреляции могут быть как положительны, так и отрицательны; а следовательно, знак числа указанного выше может быть любой.
Таким образом, объединение бумаг в портфель может значительно изменить (уменьшить или увеличить) риск по сравнению со взвешенной суммой рисков бумаг, входящих в портфель (
Посмотрим на рисунок 1. Нарисуем допустимое множество портфелей, т.е. все портфели, которые можно составить из рассматриваемого множества ценных бумаг с заданными характеристиками (ожидаемой доходностью и стандартным отклонением) и заданными коэффициентами корреляции. Обратим внимание, что поскольку x1
, …, xN (доли активов в портфеле) – это числа, принимающие любые значения, лежащие между нулем и единицей, то количество портфелей, которое можно составить из данных активов, бесконечно велико.Пусть есть два объекта A и B, которые оцениваются по k критериям. Оценки объектов будут иметь вид a1
…ak и b1…bk. По определению,(где знаки «>=» и «>» означают «не хуже» и «строго лучше» при сравнении оценок по критерию).
Когда производится выбор из ряда альтернатив, оцениваемым по многим критериям, первым логичным шагом выбора всегда является их сравнение по Парето – ведь альтернатива, доминируемая по Парето заведомо хуже, чем доминирующая ее. Таким образом, перед тем, как производить дальнейшие действия, нужно выбрать из исходного множества альтернатив подмножество недоминируемых никакими другими по Парето и из них производить дальнейший выбор.
Рассмотрим это на примере портфельной теории Марковица. Обратимся к допустимому множеству X. Выберем один из портфелей из «середки» этого множества (пусть это будет портфель A). Утверждение: этот портфель доминируется по Парето другими, у которых риск такой же, а доходность выше (например, портфель B), или доходность такая же, а риск ниже (например, портфель С), или риск ниже, а доходность выше (например, портфель D).
Портфели, доминируемые по Парето, выбирать в качестве оптимальных не следует. Соответственно, первый этап решения инвестиционной задачи – отбросить варианты, доминируемые по Парето, то есть инвестиционные решения следует принимать только из портфелей эффективного множества.
Можно доказать, что в общем случае эффективное множество всегда выпукло вверх. Тогда оптимальное решение находится как точка касания кривой безразличия и эффективного множества.
На этом мы закончим рассмотрение классической портфельной теории для целей изучения риска. Сделаем только еще одно замечание. В этой теории также вводится понятие безрискового актива, с которым связана теорема о том, что структура эффективного портфеля при наличии такого актива не будет зависеть от конкретного вида предпочтений инвестора.