Многозадачное обучение. Оно повсеместно применяется для решения задач в области классификации изображений, обработки естественного языка и т. п. Даже когда целью обучения модели является выполнение одной задачи, модель обучают в целях выполнения связанных подзадач для улучшения качества и скорости решения главной задачи. Одна из возможных атак – «отравление» набора данных одной задачи и проверка возможности использовать ее выход (результат выполнения) для других задач. Например, жертва хочет обучить модель для определения выражения лица, но из-за нехватки данных решает вспомогательную задачу распознавания лиц при помощи общедоступных наборов данных. Злоумышленник «отравляет» общедоступный набор данных, когда занимается вспомогательной задачей, так чтобы создать «черные ходы» для всей модели. Безусловно, формирование обучающего изображения для создания бэкдора не является тривиальным вопросом и требует знаний и квалификации злоумышленника. Все атаки на однозадачные модели применимы к многозадачным моделям, однако последние могут подвергаться атакам новых типов. Пример – прогнозирование смены направления для рулевого управления в автомобиле без водителя. Разработчик атакуемой модели рассматривает классификацию характеристик дороги как вспомогательную задачу. Поскольку модель обучена для двух связанных задач, выходные данные классификации характеристик дороги имеют прямую связь с выходными данными задачи прогнозирования направления рулевого управления. Запрашивая ответ от зараженной модели характеристик дороги, злоумышленник задает взаимосвязи между этими заданиями. Хотя злоумышленник может не знать, как изменить входные данные, чтобы воздействовать на рулевое управление, но он может изменить вход – подменить определенную характеристику дороги, которая, в свою очередь, повлияет на прогнозирование рулевого управления. Другими словами, злоумышленник использует задачу A в целях создания задачи состязательного целевого ввода для задачи B. Даже если он напрямую не может атаковать B, то посредством вывода А он сделает это опосредованно.
Машинное обучение в течение жизненного цикла. С непрерывным обучением тесно связаны две концепции:
предположение о том, что все исторические знания доступны и используются для изучения новых задач;
накопление полученных новых знаний.
Первая концепция допускает потенциальное заражение данных при атаках типа Backdoor и исследовательских атаках. Согласно второй концепции, процесс может быть нарушен, поскольку атака не позволит системе сохранять получаемые знания и отработанные задачи. Это тип атаки на доступность, она не дает реализовать подход к обучению в течение жизненного цикла.
Выяснение того, как «черные ходы» и атаки «отравлением» данными могут повлиять на системы обучения, имеет первостепенное значение. Например, если решение справляется с задачей накопления знаний, может ли злоумышленник создать бэкдор для одной задачи и использовать ее для всех других новых задач? Если это возможно, то последствия для безопасности будут катастрофическими.
Также злоумышленники могут атаковать процесс накопления полученных знаний. Один из методов атаки заключается в изучении того, может ли добавление нескольких тщательно созданных обучающих образцов с правильными метками изменить структуру модели так, чтобы она плохо выполнялась в прежних задачах. Злоумышленники таким образом инициируют в модели оптимизацию ретроспективных знаний, цель которой состоит в том, чтобы изменить модель под новую, атакующую задачу, тем самым повредить результаты обучения на старых задачах. Механизмы атаки и защиты, характерные для обучения на протяжении всего жизненного цикла, требуют дополнительных исследований.
§ 2. Большие данные