Читаем Ритм Вселенной. Как из хаоса возникает порядок полностью

Результаты, полученные Курамото, привели меня в восторг. Во время учебы в магистратуре нам говорили, что большие нелинейные системы – настоящие монстры, практически не поддающиеся решению. Однако Курамото удалось найти решение для одной из таких систем – и это решение было просто блестящим. Более того, это решение показалось мне не таким уж трудным для понимания. Знакомясь с ходом рассуждений Курамото, я чувствовал себя так, словно именно я сам прихожу к таким выводам. Нэнси лишь улыбалась, слушая, с каким энтузиазмом я рассказываю о своих впечатлениях от знакомства с моделью Курамото. Затем она, как бы невзначай, указала на слабые места в рассуждениях Курамото, на все его логические нестыковки. Одним словом, здесь было к чему приложить руку молодому и многообещающему математику – такому, например, как я. Моя задача заключалась в том, чтобы поместить интуитивные догадки Курамото на более солидный математический фундамент. В течение всего следующего года я работал вместе с Нэнси, пытаясь доказать теорему, которая, по нашему общему мнению, должна быть верна. Хотя мне так и не удалось решить эту задачу, модель, предложенная Курамото, все больше увлекала меня.

Даже по окончании стажировки у Нэнси Копелл я продолжал размышлять над этой моделью на протяжении нескольких последующих лет. Аспект, который интересовал меня больше всего, касался возникновения порядка из хаоса случайности. Каким образом системе, состоящей из миллионов частиц, удается спонтанно организовать себя? В этом вопросе заключалось нечто мистическое. В нем звучали даже религиозные нотки, напоминающие мне библейскую историю рождения земной тверди из чего-то совершенно бесформенного и аморфного или, как называли это состояние древние греки, из хаоса.

Возможно, мы никогда не поймем причины возникновения порядка в реальной Вселенной, но в воображаемой вселенной модели Курамото эта задача упрощается до такой степени, что мы можем найти для нее математическое решение. Здесь возникает вопрос генезиса: каким образом некогерентность порождает синхронизм? Однажды мне пришло в голову, что существует достаточно простой способ сформулировать этот вопрос в виде упражнения на решение дифференциальных уравнений: нужно лишь рассматривать некогерентность как состояние равновесия, а затем вычислить его устойчивость.

Чтобы прояснить математический смысл таких знакомых большинству из нас понятий, как равновесие и устойчивость, рассмотрим ряд примеров из окружающего нас мира. Допустим, мы поставили стакан с водой на кухонный стол. Секунду-другую вода будет «устаканиваться», а затем придет в состояние покоя. Теперь поверхность воды в стакане выглядит плоской и горизонтальной. Это и есть состояние равновесия – в том смысле, что в таком состоянии вода может пребывать сколь угодно долго. Такое равновесие можно также назвать устойчивым состоянием, поскольку, если немного встряхнуть стакан, а затем оставить его в покое, то поверхность воды в нем быстро вернется к исходному состоянию. Таким образом, равновесие означает, что ничего не меняется; устойчивость означает, что слабые возмущения быстро сходят на нет. Теперь рассмоторим другой пример. Возьмите карандаш и заточите его, затем поставьте этот карандаш вертикально на заточенный кончик грифеля и попытайтесь тщательно сбалансировать его. Отпустите карандаш. Если вам удалось идеально сбалансировать его, он продолжит стоять вертикально; таким образом, по определению, это состояние также является состоянием равновесия. Но совершенно очевидно, что такое состояние не является устойчивым: даже легчайшее дуновение ветерка опрокинет карандаш, после чего он уже не вернется самостоятельно в вертикальное положение.

Для модели Курамото некогерентность является состоянием равновесия: если осцилляторы каждой частоты распределены равномерно по окружности, то они навсегда останутся распределенными равномерно. Несмотря на то что осцилляторы бегут по окружности, их равномерное распределение остается неизменным. Нерешенная проблема заключалась в том, остается ли это состояние равновесия устойчивым, подобно воде в стакане, или неустойчивым, подобно карандашу, балансирующему на кончике своего грифеля. Если оно неустойчиво, это означало бы, что синхронизм мог бы возникнуть самопроизвольно и что бегуны со временем соберутся в группу.

Этот вопрос не давал покоя ученым в течение 15 лет. Сам Курамото публично признавался в этом. В своей книге он написал, что не знал, как подступиться к решению этой проблемы. Этот вопрос ставил ученых в тупик, поскольку существовало бесконечно большое множество способов некогерентной организации осцилляторов. Именно в этом заключалось главное препятствие. Некогерентность не была каким-то одним состоянием; это было семейство из бесконечно большого числа состояний.

Перейти на страницу:

Похожие книги

100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

История / Научная литература / Энциклопедии / Прочая научная литература / Образование и наука