Результаты, полученные Курамото, привели меня в восторг. Во время учебы в магистратуре нам говорили, что большие нелинейные системы – настоящие монстры, практически не поддающиеся решению. Однако Курамото удалось найти решение для одной из таких систем – и это решение было просто блестящим. Более того, это решение показалось мне не таким уж трудным для понимания. Знакомясь с ходом рассуждений Курамото, я чувствовал себя так, словно именно я сам прихожу к таким выводам. Нэнси лишь улыбалась, слушая, с каким энтузиазмом я рассказываю о своих впечатлениях от знакомства с моделью Курамото. Затем она, как бы невзначай, указала на слабые места в рассуждениях Курамото, на все его логические нестыковки. Одним словом, здесь было к чему приложить руку молодому и многообещающему математику – такому, например, как я. Моя задача заключалась в том, чтобы поместить интуитивные догадки Курамото на более солидный математический фундамент. В течение всего следующего года я работал вместе с Нэнси, пытаясь доказать теорему, которая, по нашему общему мнению, должна быть верна. Хотя мне так и не удалось решить эту задачу, модель, предложенная Курамото, все больше увлекала меня.
Даже по окончании стажировки у Нэнси Копелл я продолжал размышлять над этой моделью на протяжении нескольких последующих лет. Аспект, который интересовал меня больше всего, касался возникновения порядка из хаоса случайности. Каким образом системе, состоящей из миллионов частиц, удается спонтанно организовать себя? В этом вопросе заключалось нечто мистическое. В нем звучали даже религиозные нотки, напоминающие мне библейскую историю рождения земной тверди из чего-то совершенно бесформенного и аморфного или, как называли это состояние древние греки, из хаоса.
Возможно, мы никогда не поймем причины возникновения порядка в реальной Вселенной, но в воображаемой вселенной модели Курамото эта задача упрощается до такой степени, что мы можем найти для нее математическое решение. Здесь возникает вопрос генезиса: каким образом некогерентность порождает синхронизм? Однажды мне пришло в голову, что существует достаточно простой способ сформулировать этот вопрос в виде упражнения на решение дифференциальных уравнений: нужно лишь рассматривать некогерентность как состояние равновесия, а затем вычислить его устойчивость.
Чтобы прояснить математический смысл таких знакомых большинству из нас понятий, как
Для модели Курамото некогерентность является состоянием равновесия: если осцилляторы каждой частоты распределены равномерно по окружности, то они навсегда останутся распределенными равномерно. Несмотря на то что осцилляторы бегут по окружности, их равномерное распределение остается неизменным. Нерешенная проблема заключалась в том, остается ли это состояние равновесия устойчивым, подобно воде в стакане, или неустойчивым, подобно карандашу, балансирующему на кончике своего грифеля. Если оно неустойчиво, это означало бы, что синхронизм мог бы возникнуть самопроизвольно и что бегуны со временем соберутся в группу.
Этот вопрос не давал покоя ученым в течение 15 лет. Сам Курамото публично признавался в этом. В своей книге он написал, что не знал, как подступиться к решению этой проблемы. Этот вопрос ставил ученых в тупик, поскольку существовало бесконечно большое множество способов некогерентной организации осцилляторов. Именно в этом заключалось главное препятствие. Некогерентность не была каким-то одним состоянием; это было семейство из бесконечно большого числа состояний.