Читаем Ритм Вселенной. Как из хаоса возникает порядок полностью

Вообразите, например, маленький шарик, который находится на дне чашки с полусферической формой внутренней поверхности. Если такой шарик переместить в любую другую точку на внутренней поверхности чашки, он скатится обратно на дно, которое является точкой устойчивого равновесия. Теперь допустим, что форму внутренней поверхности чашки можно регулировать: с помощью некоего рычажка вы можете постепенно делать ее более плоской (то есть придавать ей форму с меньшей кривизной). Дно по-прежнему остается устойчивым, но все же менее, чем прежде: шарик, перемещенный в любую другую точку на внутренней поверхности чашки, медленнее скатывается в точку устойчивого равновесия. По мере того как вы все больше поворачиваете рычажок регулирования кривизны, форма внутренней поверхности чашки становится все более плоской. Когда рычажок регулирования достигнет некого критического деления, внутренняя поверхность чашки станет совершенно плоской и горизонтальной, а в результате дальнейшего изменения положения рычажка она станет похожа на выпуклую контактную линзу (слабо выраженная куполообразная форма), превратившись в конечном счете в выпуклую полусферу. В ходе такого постепенного превращения вогнутое дно чашки превратилось в куполообразную выпуклость. Теперь, если шарик слегка подтолкнуть, он скатится на край дна: состояние равновесия оказалось неустойчивым. Наш регулировочный рычажок оказался на критической границе между устойчивостью и неустойчивостью, когда контактная линза стала совершенно плоской. В этом – и только в этом – положении регулировочного рычажка равновесие нельзя назвать ни устойчивым, ни неустойчивым. Шарик находится в состоянии неопределенности; можно сказать по-другому: это состояние является нейтрально устойчивым. Если шарик сместить с этого положения нейтрального равновесия, он не вернется в исходное положение, но и не скатится в какое-то другое положение.

Как следует из этой метафоры, нейтральная устойчивость обычно имеет место лишь в переходных состояниях, при неких критических значениях параметров системы («рычажков», которые управляют ее свойствами). Но модель Курамото нарушала это правило. Ее некогерентное состояние упрямо оставалось нейтрально устойчивым, даже когда мы расширяли колоколообразную кривую, чтобы сделать популяцию более разнородной. Изменение положения нашего «рычажка» в достаточно широком диапазоне значений параметров не оказывало никакого влияния.

Мы обсудили этот необычный результат с Полом Мэтьюзом, преподавателем прикладной математики в Массачусетском технологическом институте. Пол провел ряд сеансов компьютерного моделирования, результаты которых, однако, повергли нас в еще большее недоумение. Он протестировал устойчивость другим способом, вычислив поведение параметра порядка на достаточно продолжительном отрезке времени, и обнаружил, что значение этого параметра снижается по экспоненциальному закону – что было, вообще говоря, характерным признаком устойчивости, а не нейтральной устойчивости. Теперь мы оказались по-настоящему озадаченны: некогерентность была нейтральной по одному показателю, но устойчивой по другому показателю.

Спустя несколько недель Пол читал лекцию у себя на родине, в Англии, в университете Уорвика. В ходе этой лекции он описал странные результаты, полученные нами[46]. Один из присутствующих на этой лекции, профессор Джордж Роуландз, сказал Полу, что на самом деле в этом результате нет ничего странного: это явление называется демпфированием Ландау[47] и стало известно физикам, изучающим свойства плазмы, еще около 45 лет назад.

О свойствах плазмы нам было известно не так уж много, но все мы, конечно же, слышали о Ландау. Лев Ландау был одним из выдающихся физиков XX столетия. В эпоху узкой специализации он хорошо разбирался во всех отраслях теоретической физики, начиная с субатомных частиц и заканчивая турбулентностью в жидкостях. Он был яркой личностью, эксцентричным и вспыльчивым гением, карьера которого завершилась 7 января 1962 г., когда он попал в ужасную автокатастрофу под Москвой[48]. Его тело было раздавлено, кости переломаны, многие органы серьезно повреждены. Он впал в состояние комы. В течение 100 суток его электроэнцефалограмма представляла собой практически горизонтальную линию. Врачи подключили его к аппарату для искусственного дыхания и прилагали героические усилия, пытаясь спасти ему жизнь. Четырежды констатировали его смерть, но каждый раз, буквально чудом, он возвращался к жизни. Позже в том же году он был награжден Нобелевской премией за открытия, сделанные им десятью годами ранее (он использовал квантовую теорию, чтобы объяснить необычное поведение сверхтекучего гелия при температурах, близких к абсолютному нулю). В октябре 1964 г. его выписали из больницы, однако ему так и не удалось выздороветь полностью. Он умер через несколько лет.

Перейти на страницу:

Похожие книги

100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

История / Научная литература / Энциклопедии / Прочая научная литература / Образование и наука