Читаем Риторическая теория числа полностью

Господа, вычислимости-невычислимости, сложности и т.д. отражают устройство реального мира. В программировании конструктивистская математика имеет практически прикладное значение, хотя бы как стоппер для химерических проектов. Важны также ее мировоззренческие результаты. Приятно сознавать какие мы умные — в части вычислений любая сверхцивилизация относительно нас может иметь только количественные преимущества. С другой стороны, у нас тоже только количественные преимущества по сравнению с менее развитыми существами начиная с некоторого достаточно низкого порога. В алгоритмических системах таким порогом является возможность написания в этой системе универсального алгоритма, т.е. интепретатора алгоритмов этой системы, возможность создания алгоритма, «понимающего» все другие алгоритмы (в том числе и себя). Для людей потенциальная неограниченность интеллектуальных достижений также, видимо, появляется с возможностью понимать себя и других. Например, осознавать, когда ты переключаешься с математики на риторику. Дальше ограничения только по быстродействию, памяти, закачиванию в голову нужных данных и алгоритмов.


В.Н. Левин, Вы пишите: «Следовательно, ПРЕДСТАВИТЬ ВСЕ простые числа одним набором НЕЛЬЗЯ!» В нормальных терминах утверждение звучит так: не существует алгоритма перечисления простых чисел, т.е. А(n) выдает n―е простое число, если оно есть. Утверждение опровергается предъявлением такого алгоритма. Можете сами его написать. Вообще какие могут быть разговоры о двойном отрицании и неконструктивности, когда есть алгоритм порождения объектов, куда уж конструктивнее. А на гиптезу о конечности простых чисел Евклид вообще одинарное отрицание вешает.


В.Н. Левин:


EEV, Вы пишите мне: «Вы использовали лишнюю сущность, а именно понятие “набора”, даже не потрудившись ее определить. Поэтому вывод некорректен». EEV, Вы не разглядели в термине «набор» первичного понятия МНОЖЕСТВА.


Михаил М., так где же Ваше «легкое» конструктивистское доказательство БЕСКОНЕЧНОСТИ множества простых чисел? Или ссылка на обучение под началом Маркова кажется Вам достаточной? Вы пишите: «А на гипотезу о конечности простых чисел Евклид вообще одинарное отрицание вешает». Неужели одинарное? Он пытается идти методом «от противного». Мол, представим, что истинно «А» (множество простых чисел конечно). Далее пытается НЕЯВНО ввести определение понятиям КОНЕЧНОСТИ-БЕСКОНЕЧНОСТИ, неявно противопоставляя их друг другу и предполагая, что «третьего не дано». Вы сами писали: «Основное отличие от классической логики — отказ от аксиомы, разрешающей автоматически снимать двойное отрицание. То есть в конструктивной математике “ложно, что ложно” еще не означает “истинно”, “не может не быть объекта” с какими-то свойствами еще не значит, что такой объект есть, и с ним можно что-то делать дальше. Отсюда следует отказ от безусловной истинности закона исключенного третьего — “суждение либо ложно, либо истинно”, “либо объект есть, либо его нет”». В конструктивной математике для снятия двойного отрицания необходимо указать «способ» построения объекта, для истинности суждений вида «исключенного третьего» необходимо указать способ определения какая именно из альтернатив верна «ложно» или «истинно». Вы можете возразить, мол, Евклид указывает способ построения объекта. Но разве как раз того объекта, который прямо указывает какая из «альтернатив» верна, т. е. объекта “БЕСКОНЕЧНОЕ множество простых чисел”? Отнюдь нет. Он способа построения ЭТОГО объекта (БЕСКОНЕЧНОГО множества) не приводит. Он лишь обнаруживает отрицание предположения о возможности представить КОНЕЧНОЕ множество простых чисел. Это отрицание, в парадигме конструктивистской математики, означает отсутствие способа получения такого объекта как КОНЕЧНОЕ множество всех простых чисел.

ИТОГО:

1.Нет способа получения объекта «КОНЕЧНОЕ множество всех простых чисел».

2. Нет способа получения объекта «БЕСКОНЕЧНОЕ множество всех простых чисел».

Так где же Ваше легкое конструктивистское доказательство?..

Конструктивистская Машина Тьюринга— Поста в качестве исходных аксиом имеет неконструктивистскую аксиому о бесконечном быстродействии процессора, бесконечной длине ленты, на которой записываются исходные, промежуточные данные и результаты расчетов, бесконечном размере памяти для записи (хранения) алгоритма. Если заменить эту аксиому на тезис о конечности характеристик машины Тьюринга— Поста, то мы получим БОЛЕЕ конструктивистскую теорию, для которой становятся актуальными тезисы:

К Гипотезе 1.

О конечности количества простых чисел.

Фактически это гипотеза о конечности мира, о конечности числа чисел вообще.

К Гипотезе 3.

О симметричности распределения простых чисел в ряду целых чисел.

Первые простые числа идут подряд друг за другом: 1, 2, 3. (1 ПРИНЯТО к простым числам не относить. При этом неотнесение 1 к «простым» числам является условным; основной части определения простого числа (неделимости на все числа кроме себя и единицы) единица удовлетворяет).

В парадигме конструктивистской математики можно утверждать:

Перейти на страницу:

Похожие книги

Что такое «собственность»?
Что такое «собственность»?

Книга, предлагаемая вниманию читателя, содержит важнейшие работы французского философа, основоположника теории анархизма Пьера Жозефа Прудона (1809–1865): «Что такое собственность? Или Исследование о принципе права и власти» и «Бедность как экономический принцип». В них наиболее полно воплощена идея Прудона об идеальном обществе, основанном на «синтезе общности и собственности», которое он именует обществом свободы. Ее составляющие – равенство (условий) и власть закона (но не власть чьей–либо воли). В книгу вошло также посмертно опубликованное сочинение Прудона «Порнократия, или Женщины в настоящее время» – социологический этюд о роли женщины в современном обществе, ее значении в истории развития человечества. Эти работ Прудона не издавались в нашей стране около ста лет.В качестве приложения в книгу помещены письмо К. Маркса И.Б. Швейцеру «О Прудоне» и очерк о нем известного экономиста, историка и социолога М.И. Туган–Барановского, а также выдержки из сочинений Ш.О. Сен–Бёва «Прудон, его жизнь и переписка» и С. — Р. Тайлландье «Прудон и Карл Грюн».Издание снабжено комментариями, указателем имен (в fb2 удалён в силу физической бессмысленности). Предназначено для всех, кто интересуется философией, этикой, социологией.

Пьер Жозеф Прудон

Философия / Образование и наука