Читаем Роботы наступают. Развитие технологий и будущее без работы полностью

Выводы, получаемые при анализе больших данных, как правило, основываются исключительно на корреляциях и ничего не говорят о причинах изучаемого феномена. Алгоритм может выяснить, что если A соответствует действительности, то и B, скорее всего, тоже верно. Но он не способен установить причинно-следственную связь между A и B и уж тем более не может установить, обусловлены ли A и B каким-либо иным внешним фактором. Во многих случаях, однако, и в особенности в мире бизнеса, где абсолютным критерием успеха является прибыльность и эффективность, а не глубина понимания, даже простая корреляция сама по себе может представлять очень большую ценность. Большие данные могут стать для менеджмента источником подробнейших сведений по самому широкому кругу вопросов: все — от параметров работы каждого отдельного станка до общих результатов работы международной корпорации — может быть потенциально подвергнуто анализу с такой степенью подробности, которая прежде была просто невозможна.

Непрерывно увеличивающийся в объеме массив данных все чаще рассматривается в качества своего рода ресурса, который, если за него взяться как следует, может стать источником ценной информации, причем не только сейчас, но и в будущем. Глядя на компании в добывающих отраслях (например, нефтегазовой), год за годом с успехом пользующихся плодами технического прогресса, легко представить, как, вооружившись возросшей вычислительной мощью компьютеров, а также усовершенствованным ПО и новыми методами анализа, корпорации во всех секторах экономики препарируют данные, извлекая из них знания, которые сразу превращаются в дополнительную прибыль. Более того, как раз вера инвесторов в то, что все так и будет, судя по всему, и является главным фактором, обуславливающим такую громадную рыночную стоимость компаний, работающих с большими объемами данных, т. е. таких, как Facebook.

Машинное обучение — метод, при котором компьютер перебирает данные и, по сути, пишет собственную программу на основе обнаруженных статистических закономерностей, — является одним из наиболее эффективных средств извлечения самой ценной информации. Как правило, процесс машинного обучения разбивается на два этапа: сначала алгоритм обучается на имеющихся данных, а затем применяется к новой информации для решения похожих задач. Самый очевидный пример использования машинного обучения на практике — фильтры спама в электронной почте. На этапе обучения алгоритм обрабатывает миллионы сообщений, заранее помеченных как спам или не спам. При этом никто не садится и не программирует систему напрямую так, чтобы она могла распознавать все мыслимые способы написания слова «виагра». Вместо этого программа учится самостоятельно распознавать нужную информацию. Результатом обучения является приложение, которое способно автоматически идентифицировать основной массив нежелательной почты и при этом постоянно совершенствоваться и адаптироваться по мере появления новых образцов спама. Алгоритмы машинного обучения, работающие на основе тех же самых принципов, используются и при подборе рекомендуемых книг на Amazon, фильмов — на Netflix и потенциальных партнеров — на Match.

Одним из самых впечатляющих примеров эффективности машинного обучения стал созданный Google онлайн-переводчик. Используемые в нем алгоритмы основаны на подходе, который можно назвать подходом Rosetta Stone[24] и который предполагает анализ и сравнение миллионов страниц текста, который уже был переведен на различные языки. Разработчики Google начали с официальных документов Организации Объединенных Наций, а затем расширили круг исходных текстов, включив в него содержимое Всемирной паутины. Чтобы найти достаточное количество примеров для ненасытных алгоритмов самообучения, они использовали поисковую систему Google. Если судить по одному только количеству документов, использовавшихся в процессе обучения системы, то становится очевидно, что ничего подобного прежде не было. Специалист в области компьютерных вычислений Франц Ок, который руководил проектом, отметил, что его команда выстроила «очень-очень большие языковые модели, намного более масштабные, чем все, что было прежде за всю историю человечества»{124}.

Перейти на страницу:

Все книги серии Искусственный интеллект

Роботы наступают. Развитие технологий и будущее без работы
Роботы наступают. Развитие технологий и будущее без работы

Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого. Цель автора — не испугать читателя, а привлечь внимание к этим непростым темам. Эту увлекательную и содержательную книгу стоит прочитать всем, кто хочет понять, как развитие новых технологий влияет на экономические перспективы, на наших детей и на общество в целом.

Мартин Форд

Публицистика
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Homo Roboticus? Люди и машины в поисках взаимопонимания
Homo Roboticus? Люди и машины в поисках взаимопонимания

Хотим мы этого или нет, но скоро нам придется сосуществовать с автономными машинами. Уже сейчас мы тратим заметную часть времени на взаимодействие с механическими подобиями людей в видеоиграх или в виртуальных системах – от FAQbots до Siri. Кем они станут – нашими слугами, помощниками, коллегами или хозяевами? Автор пытается найти ответ на философский вопрос о будущих взаимоотношениях людей и машин и представляет читателям группу компьютерщиков, программистов, робототехников и нейробиологов, считающих, что мы подходим к переломному моменту, когда искусственный интеллект превзойдет человеческий и наш мир безвозвратно изменится. Однако место человека в этом новом мире специалисты видят по-разному, и автор знакомит нас со всем спектром мнений. Центральная тема книги – двойственность и парадоксальность, присущие деятельности разработчиков, которые то расширяют возможности человека, то заменяют людей с помощью создаваемых систем.

Джон Маркофф

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги