Читаем Роботы наступают. Развитие технологий и будущее без работы полностью

Проблема Piquant (а также ее конкурентов) была не только в скорости, но и в точности. Система выдавала правильные ответы на вопросы лишь в 35 % случаев — для такого результата было бы достаточно просто ввести вопросы в строку поиска Google{133}. Любые попытки команды Феруччи построить прототип системы для игры в «Jeopardy!» на основе проекта Piquant неизменно заканчивались неудачей. Сама мысль о том, что однажды Piquant сможет составить конкуренцию лучшему игроку «Jeopardy!» Кену Дженнигсу, казалась просто нелепой. Феруччи пришлось признать, что его команде придется начинать с нуля, а сам проект потребует масштабных исследований и разработок, на которые уйдет по меньшей мере полдесятилетия. В 2007 г. он получил одобрение от руководства IBM и принялся за разработку, как сам об этом говорит, «самой сложной интеллектуальной архитектуры, которую когда-либо видел мир»{134}. Он привлек к решению этой задачи ресурсы всей компании, собрав вместе специалистов по искусственному интеллекту из различных подразделений IBM, а также лучших университетов, включая МIT и Университет Карнеги — Меллона{135}.

Команда Феруччи, в которую в конечном итоге вошло около двадцати исследователей, начала работу с создания массивного набора справочной информации, которая должна была послужить основой для ответов Watson. В него вошло приблизительно 200 млн страниц информации, включая словари и справочники, произведения литературы, газетные архивы, веб-страницы и почти все содержимое «Википедии». Затем они собрали исторические данные по всем выпускам телевикторины «Jeopardy!». Свыше 180 000 подсказок из предшествующих игр послужили исходным материалом для алгоритмов машинного обучения Watson, тогда как результаты лучших игроков были использованы для оттачивания игровой стратегии суперкомпьютера{136}. При разработке Watson были созданы тысячи отдельных алгоритмов, каждый из которых был направлен на решение конкретной задачи, включая, например, поиск по тексту, сравнение дат, времени и мест, анализ грамматических конструкций в подсказках и преобразование исходной информации в надлежащим образом оформленные возможные ответы.

При поиске ответа Watson сначала разбирает подсказку на составные части, анализирует слова и пытается понять, что именно он должен найти. Этот кажущийся столь простым этап сам по себе представляет задачу колоссальной трудности для компьютера. Рассмотрим, например, подсказку из категории «Блоги Линкольна», которая использовалась при обучении Watson: «Секретарь Чейз только что передал это мне в третий раз. И знаешь что, дружище? На этот раз я это принимаю». Чтобы у машины был хоть какой-то шанс дать правильный ответ, она должна для начала понять, что первое слово «это» в данном примере выступает в качестве заместителя ответа, который она и должна найти{137}.

Как только Watson заканчивает анализ подсказки, он запускает сразу сотни алгоритмов, каждый из которых применяет отличный от остальных подход, пытаясь найти возможный ответ в содержащемся в памяти компьютера массиве справочных материалов. Если вернуться к приведенному выше примеру, то сначала Watson выделяет слово «Линкольн» в названии категории как значимое, а слово «блоги» игнорирует, воспринимая его как фактор отвлечения внимания: в отличие от человека, машина не способна понять, что сценаристы шоу пытались представить Авраама Линкольна блогером.

Перейти на страницу:

Все книги серии Искусственный интеллект

Роботы наступают. Развитие технологий и будущее без работы
Роботы наступают. Развитие технологий и будущее без работы

Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого. Цель автора — не испугать читателя, а привлечь внимание к этим непростым темам. Эту увлекательную и содержательную книгу стоит прочитать всем, кто хочет понять, как развитие новых технологий влияет на экономические перспективы, на наших детей и на общество в целом.

Мартин Форд

Публицистика
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Homo Roboticus? Люди и машины в поисках взаимопонимания
Homo Roboticus? Люди и машины в поисках взаимопонимания

Хотим мы этого или нет, но скоро нам придется сосуществовать с автономными машинами. Уже сейчас мы тратим заметную часть времени на взаимодействие с механическими подобиями людей в видеоиграх или в виртуальных системах – от FAQbots до Siri. Кем они станут – нашими слугами, помощниками, коллегами или хозяевами? Автор пытается найти ответ на философский вопрос о будущих взаимоотношениях людей и машин и представляет читателям группу компьютерщиков, программистов, робототехников и нейробиологов, считающих, что мы подходим к переломному моменту, когда искусственный интеллект превзойдет человеческий и наш мир безвозвратно изменится. Однако место человека в этом новом мире специалисты видят по-разному, и автор знакомит нас со всем спектром мнений. Центральная тема книги – двойственность и парадоксальность, присущие деятельности разработчиков, которые то расширяют возможности человека, то заменяют людей с помощью создаваемых систем.

Джон Маркофф

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги