Читаем Роман с Data Science. Как монетизировать большие данные полностью

Остап Бендер знал четыреста сравнительно честных способов отъема денег у населения. Профессиональный аналитик знает примерно столько же способов «повернуть» цифры в сторону «нужного» решения. К сожалению, это очень распространено в политике: вспомните, как государства рапортовали о количестве зараженных во время пандемии вируса COVID-19. Показатели смертности в России были занижены [6]. Оказалось, что если человек болел коронавирусом и умер от сопутствующего заболевания, то в соответствующую статистику не попадет. В большинстве же западных стран одной положительной пробы на коронавирус было достаточно, чтобы попасть в статистику. Если копнуть глубже, мы видим, что у всех разная методика и разные цели. Существуют объективные и субъективные причины неточности таких цифр.

Первая причина – объективная: много бессимптомных носителей вируса, они не обращаются к врачам. Здесь требуется «ковровое» тестирование населения, которое подразумевает случайную выборку из всей популяции определенной местности. Тестирование добровольное, значит, кто-то не придет. Некоторые – потому, что у них есть симптомы коронавируса, и если это будет обнаружено в процессе тестирования, то их запрут дома на двухнедельный карантин. А это может привести к потере заработка. В итоге мы получим выборку, смещенную в сторону здоровых людей, а значит, и заниженную оценку количества заболевших.

Вторая причина тоже объективная – нет денег на массовое тестирование населения.

А вот третья причина – субъективная: власти хотят уменьшить официальную статистику заболевших, чтобы снизить панику среди населения и успокоить международное сообщество. Умение понимать эти причины и читать данные между строк – важное качество аналитика, которое позволяет ему делать более объективные выводы.

В работе я постоянно с этим сталкивался. Сейчас все живут на KPI, поэтому руководитель будет не очень-то рад плохим цифрам – премия висит на волоске. Возникает искушение найти показатели, которые улучшились. Нужно быть очень сильным руководителем, чтобы принять отрицательные результаты и внести коррекцию в работу. Аналитик данных как исследователь несет личную ответственность за результат своих цифр.

<p><strong>Чему можно научиться у Amazon?</strong></p>

Мне всегда нравились письма Джеффа Безоса (основателя Amazon.com) акционерам. Например, еще в 1999 году он писал про важность систем персональных рекомендаций на сайте, которые сейчас стали стандартом в современной электронной коммерции. Меня заинтересовали два его письма: 2015 [2] и 2016 [3] годов.

В первом из них Безос писал про «Фабрику изобретений» (Invention Machine). Он точно знает, о чем говорит, – само провидение вело Amazon через тернии электронной коммерции. Попутно в компании изобретали много вещей, абсолютно новых для рынка: система рекомендаций, А/Б-тесты (да-да, именно они были пионерами тестирования гипотез для веба), AWS (Amazon Web Services), роботизация склада, кнопки на холодильник для мгновенного заказа порошка и многое другое.

Так вот, в первом письме он рассуждает о том, как в больших компаниях принимаются решения об изобретении новых продуктов. Часто процесс утверждения выглядит так: все участники процесса (как правило, руководители департаментов компании) проставляют свои «визы». Если решение положительное, идея или гипотеза отправляются на реализацию. Здесь Безос предупреждает, что есть два типа решений и они не должны проходить один и тот же процесс утверждения.

Первый тип – решения, у которых нет или почти нет обратной дороги. Это как дверь, в которую можно войти, но нельзя выйти. Здесь нужно действовать очень внимательно и осторожно.

Второй тип – решения, у которых есть обратный ход. Дверь, в которую можно войти и выйти. Здесь он предлагает утверждать идею достаточно быстро, не мучая ее долго бюрократическими процедурами.

В письме 2016 года Безос противопоставляет компанию Дня 1 (Day 1), где сохраняется живая атмосфера создания компании и новых продуктов, компании Дня 2 (Day 2), которая статична и, как следствие, приходит к своей ненужности и смерти. Он выделяет 4 фактора, которые определяют компанию Дня 1:

• истинная одержимость покупателем (customer obsession);

• скепсис относительно моделей (a skeptical view of proxies);

• стремительное освоение внешних трендов (the eager adoption of external trends);

• стремительное принятие решений (the eager adoption of external trends).

Последний пункт мне кажется особенно важным в контексте этой книги. Для поддержания атмосферы компании Дня 1 требуется принимать быстрые и качественные решения. Мой шестилетний сын в таких случаях восклицает: «Но как?» Вот правила Безоса:

1. Никогда не использовать один-единственный процесс принятия решений (есть два типа решений, про которые я написал выше). Не дожидаться получения 90 % всей информации, нужной для принятия решения, – 70 % уже достаточно. Ошибаться не так страшно, если вы умеете быстро исправляться. А вот промедление, скорее всего, влетит вам в копеечку.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии