Читаем Роман с Data Science. Как монетизировать большие данные полностью

Можно, но не всегда и везде. Области, где можно принимать решение только на основе данных, уже захвачены компьютерными алгоритмами. Они не устают и очень хорошо масштабируются. Тот же самый автопилот – уже относительно недалекое будущее: алгоритмы принимают решение на основе данных, поступающих к ним от датчиков, и управляют автомобилем.

Человек – универсальное существо, способное решать множество задач. Если задачу достаточно сузить, то можно сделать алгоритм, который будет работать быстрее тысячи человек. Но в отличие от человека, алгоритм не способен сделать ни шага в сторону от заданной схемы: его придется дорабатывать, внося каждое изменение. В этом и заключается вся суть автоматизации: сделать дешевле, быстрее и без участия человека. Поэтому все так одержимы идеей искусственного интеллекта.

На решения, принимаемые людьми, влияет много факторов. Один из них – так называемые когнитивные искажения, то есть систематические ошибки в восприятии и мышлении. Например, систематическая ошибка выжившего. Во время Второй мировой войны нью-йоркскому математику Абрахаму Вальду поручили исследовать пробоины на самолетах-бомбардировщиках, возвратившихся из боя, чтобы понять, в каких местах нужно усилить броню. Первое «логичное» решение – усилить броню в местах, поврежденных вражескими зенитками и пулеметами. Но Вальд понимал, что не может изучить все самолеты, включая те, что погибли. Проанализировав проблему как математик, он предложил бронировать те места, которые остались целыми, ведь самолеты с такими повреждениями не возвращались на базу, а значит, это самые уязвимые места.

Ошибку выжившего допустить очень легко. Чему нас учит пример Вальда? Тому, что нужно думать о всей генеральной совокупности. Ошибка выжившего является одной из форм когнитивных искажений.

В анализе данных ошибка выжившего – это учет известного и пренебрежение неизвестным, но существующим. С этой ошибкой очень легко столкнуться, когда у нас есть какие-то данные, на основе которых нужно сделать вывод. Любые данные – это выборка, ограниченное число. Сама выборка сделана из генеральной совокупности. Если выборка сделана случайно и она достаточно большая, то все хорошо – большая часть закономерностей будет зафиксирована в выборке, и выводы будут объективными. Если же выборка была не случайной, как в нашем случае с самолетами, где в ней отсутствовали сбитые машины, – то, скорее всего, выводы будут ошибочными.

Например, в среднем только 1 из 100 посетителей сайта интернет-магазина совершает покупку. Если мы захотим улучшить свой сайт, чтобы больше покупателей покупали, то с какими посетителями нужно работать? Обычно дизайнеры и продуктологи обращают внимание на существующих покупателей из-за того, что с ними можно пообщаться, есть контактная информация из заказов, по ним есть хорошая статистика. Но эта выборка составляет всего лишь 1 % от всей генеральной совокупности посетителей; с остальными почти невозможно связаться – это «сбитые самолеты». В итоге будет смещение выводов в сторону «выживших», а значит, выводы анализа не будут работать для всех посетителей.

Еще одно когнитивное искажение – предвзятость результата (outcome bias). Представьте себе – вам предлагают два варианта на выбор:

• Сыграть в «Орла или решку» – если выпадет орел, получите 10 000 рублей.

• Сыграть игральной костью с шестью гранями – если выпадет 6, получите 10 000 рублей.

Какой вариант выберете? Естественно первый, в котором шанс выиграть 1 к 2, во втором варианте значительно хуже – 1 к 6. Монету подбросили – выпала решка, вы ничего не получили. Тут же бросили кость, выпала шестерка. Будет ли обидно? Да, будет. Но было ли наше решение правильным?

Этот пример я взял из поста «Фокусируйтесь на решениях, а не на результате» [5] Кэсси Козырьков (Cassie Kozyrkov), которая работает директором по принятию решений [4] (Decision Intelligence) в Google. Она советует всегда оценивать верность решения, учитывая, какой именно информацией вы обладали в момент его принятия. Многие люди жалеют, что они не уволились с работы раньше и только потеряли время, откладывая это решение, – я и сам в свое время так думал. И это отличный пример предвзятости результата – мы понимаем, что нужно было уволиться раньше, только обладая той информацией, которая у нас есть на данный момент. Например, что с тех пор зарплата так и не выросла, а интересный проект, который мы предвкушали, так и не был запущен. Оценивая последствия своего решения (особенно неудачного), в приступе самокопания мы не должны забывать, что принимали решение в условиях неопределенности.

<p>Глава 2</p><p>Делаем анализ данных</p>
Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии