Читаем Роман с Data Science. Как монетизировать большие данные полностью

Интерактивный анализ – это когда вы исследуете данные, проваливаясь вглубь цифр и метрик; он де-факто считается стандартом любой аналитической системы. Есть графический тип анализа, хороший пример – Google Analytics: практически все тут можно сделать мышью. Второй тип – сводные таблицы. Я больше склонен именно к такому типу анализа. Делаю выборку данных, копирую ее в любую электронную таблицу, включаю анализ сводных таблиц (pivot table), а далее уже в интерфейсе «кручу» данные. На самом деле почти всегда, когда мы работаем с интерактивным анализом данных, мы работаем со сводными таблицами.

Если вкратце, то мои минимальные требования к отчетной системе такие:

• авторизация пользователей, желательно завязанная на корпоративную систему доступа;

• тонкий клиент, доступ через веб-браузер;

• возможность просмотра отчета, полученного по электронной почте, сразу на экране;

• несложная параметризация большого отчета, состоящего из множества блоков;

• кэширование результатов.

<p><strong>Сводные таблицы</strong></p>

Сводные таблицы (pivot tables) – это самое лучшее, что было изобретено в разведочном анализе данных. Если аналитик хорошо владеет сводными таблицами, он всегда заработает на хлеб с маслом. Сводная таблица избавляет нас от огромного числа бесполезных запросов к данным, когда нужно просто найти хоть какую-то зацепку. Я уже писал выше про свой личный шаблон интерактивного анализа данных: сделать выборку данных, скопировать данные в электронные таблицы, построить сводную таблицу и работать с ней. Этот способ сэкономил мне годы по сравнению с прямыми методами – подсчетом описательных статистик, построением простых графиков, то есть стандартными операциями анализа данных для любых аналитических инструментов. А теперь разберем по пунктам, как работать со сводными таблицами.

Во-первых, нужно подготовить данные. Они должны выглядеть как таблица фактов (fact table), которая делается на основе таблиц состояния на определенный момент или лога изменений данных (вспоминаем главу про данные). Если в таблице используются непонятные обычному человеку идентификаторы и у вас есть справочники на них, то лучше расшифровать это поле, присоединив (join или merge) данные справочника к таблице фактов. Поясню на примере. Мы ищем причину падения продаж. Пусть у нас есть таблица состояния заказов на определенный момент, у нее есть следующие поля:

• Дата и время создания заказа (например, 10 ноября 2020 года 12:35:02).

• ID типа клиента, который совершил заказ (1, 2).

• ID статуса клиента в программе лояльности (1, 2, 3).

• ID заказа (2134, 2135, …).

• ID клиента (1, 2, 3, 4…).

• Сумма заказа в рублях (102, 1012…).

Эта таблица будет таблицей фактов, так как в ней записаны факты появления заказов. Аналитик хочет увидеть, как заказывали клиенты разных типов и статусов в программе лояльности. У него есть гипотеза, что там находится основная причина изменения продаж. ID-поля нечитаемы и созданы для нормализации таблиц в учетной базе данных, но у нас есть справочники (табл. 7.1–7.2), которые полностью расшифровывают их.

Таблица 7.1. Справочник типа клиента

Таблица 7.2. Статусы клиента в программе лояльности

После соединения (join или merge) таблицы фактов со справочниками мы получим обновленную таблицу (табл. 7.3) фактов:

• datetime – дата и время создания заказа (например, 10 ноября 2020 года 12:35:02).

• client_type – тип клиента, который совершил заказ (физическое или юридическое лицо).

• client_status – статус клиента в программе лояльности (VIP, есть карта лояльности, нет карты лояльности).

• order_id – ID заказа (2134, 2135, …).

• client_id – ID клиента (1, 2…).

• amount – cумма заказа в рублях (102, 1012…).

Таблица 7.3. Пример объединения данных

Что в этой таблице фактов хорошо – нет id полей, кроме двух – заказов и клиентов, но это полезные поля, они, возможно, понадобятся, чтобы посмотреть более подробно какие-то заказы во внутренней учетной системе. Аналитик получил выборку данных в указанном выше виде, поместил ее в электронную таблицу, например Microsoft Excel или Google Sheets. Построил над этой таблицей сводную (pivot table). Приступим к ее анализу.

В сводных таблицах есть два типа данных: измерения (dimensions) и показатели (или меры, measures). Измерения представлены в формате системы координат. Когда я слышу слово «измерения», я представляю себе три оси координат, выходящие из одной точки перпендикулярно по отношению друг другу – как нас учили на уроках геометрии. Измерений (осей) может быть гораздо больше трех. Их можно будет использовать в виде столбцов, строк или фильтров сводной таблицы, но их нельзя помещать в ячейки. Примеры измерений:

• Дата и время.

• Тип клиента.

• Статус клиента.

Показатели – это уже статистики, которые будут рассчитываться в сводной таблице, когда вы будете «вращать» или менять измерения. Они, как правило, агрегатные: суммы, средние, количество уникальных значений (distinct count), количество непустых значений (count). Примеры показателей для нашей задачи:

• Сумма заказов.

• Средний чек заказа.

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

100 лучших игр и упражнений для успешного супружества и счастливого родительства
100 лучших игр и упражнений для успешного супружества и счастливого родительства

Книга известного психолога-консультанта Михаила Кипниса представляет собой сборник психологических игр, упражнений и занимательных текстов, которые помогут выстроить эффективную и увлекательную групповую работу тренерам, педагогам, семейным психологам и консультантам. Описание каждого упражнения включает в себя рекомендации по его применению, необходимые материалы, инструкции участникам, оценку необходимого для его проведения времени и размера группы, вопросы для дискуссии с участниками и выводы, к которым они должны прийти.Супружеские пары, родителей и их детей это пособие обучит открытой и конструктивной коммуникации, установлению эмоционально богатых, доверительных отношений, укрепит партнерство между взрослыми членами семьи и детьми, даст почувствовать радость, ответственность и счастье семейного общения.

Михаил Шаевич Кипнис

Карьера, кадры