Читаем Роман с Data Science. Как монетизировать большие данные полностью

Для этого вначале выбирается фича. Разделив датасет по ее значению (для непрерывных подбираются пороги), мы получаем наибольшее уменьшение энтропии Шеннона (или наибольший информационный выигрыш). Для этого на каждом шаге происходит полный перебор всех фич и их значений. Этот процесс повторяется много раз, пока мы не достигнем ситуации, когда уже делить нечего, в выборке данных остались только наблюдения одного класса – это и будет листом. Часто это грозит переобучением – полученное дерево слишком сильно подстроилось под выборку, запомнив все данные в листьях. На практике при построении деревьев решений у них ограничивают глубину и максимальное число элементов в листьях. А если ничего не помогает, то проводят «обрезку» дерева (pruning или postpruning). Обрезка идет от листьев к корню. Решение принимается на основе проверки: насколько ухудшится качество дерева, если объединить эти два листа. Для этого используется отдельный небольшой датасет, который не участвовал в обучении [55].

<p><strong>Ошибки обучения</strong></p>

Модель в процессе обучения, если она правильно выбрана, пытается найти закономерности (patterns) и обобщить (generalize) их. Показатели эффективности позволяют сравнивать разные модели или подходы к их обучению путем простого сравнения. Согласитесь, что если у вас будут две модели, ошибка прогнозирования первой равна 15 %, а второй 10 %, то сразу понятно, что следует предпочесть вторую модель. А что будет, если при тестировании в модель попадут данные, которых не было в обучающем датасете? Если при обучении мы получили хорошее качество обобщения модели, то все будет в порядке, ошибка будет небольшой, а если нет, то ошибка может быть очень большой.

Итогом обучения модели могут быть два типа ошибок:

• модель не заметила закономерности (high bias, underfitting – недообучена);

• модель сделала слишком сложную интерпретацию, например, там, где мы видим линейную зависимость, модель увидела квадратичную (high variance, overfitting – переобучена).

Рис. 8.8. Правильное обучение, недообучение, переобучение

Попробую это продемонстрировать. На картинке (рис. 8.8) изображены результаты экспериментов в виде точек (вспомните лабы по физике в школе). Мы должны найти закономерности – построить линии, их описывающие. На первой картинке все хорошо: прямая линия хорошо описывает данные, расстояния от точек до самой линии небольшие. Модель правильно определила закономерность. На второй – явно у нас зависимость нелинейная, например квадратичная. Значит, линия, проведенная по точкам, неправильная. Мы получили недообученную модель (underfitting), ошиблись порядком функции. На третьей картинке ситуация наоборот, модель выбрана слишком сложной для линейной зависимости, которая наблюдается по точкам. Выбросы данных исказили ее. Здесь налицо переобучение, нужно было выбрать модель попроще – линейную.

Я нарисовал относительно искусственную ситуацию – одна независимая переменная на горизонтальной оси и одна зависимая переменная на вертикальной оси. В таких простых условиях мы можем прямо на графике увидеть проблему. Но что будет, если у нас много независимых переменных, например десяток? Тут на помощь приходит подход для тестирования модели – валидация.

Она служит как раз для понимания таких ошибок, когда мы работаем с моделью как с черным ящиком. Самый простой подход – делим случайно датасет на две части: большую часть используем для обучения модели, меньшую – для ее тестирования. Обычно соотношение 80 к 20. Фокус здесь в том, что настоящая ошибка, когда модель выведем в бой, будет близка к ошибке, которую мы получим на тестовом датасете. Есть еще один вариант валидации, когда данные делятся не на две, а на три части: на первой части – обучается модель, на второй – происходит подбор гиперпараметров модели (настройки модели), на третьей уже получают тестовую оценку. Эндрю Ын в своей книге «Machine learning Yearning» [60] считает эту модель валидации основной. Теперь обсудим сам алгоритм диагностики. Допустим, у нас есть две цифры – среднеквадратичные ошибки для обучающего датасета и тестового. Теперь сравним их:

• Тестовые и обучающие ошибки практически совпадают, сама ошибка минимальна и вас устраивает. Поздравляю, модель обучена правильно, ее можно выводить в бой.

• Тестовая ошибка существенно больше обучающей. При этом обучающая ошибка вас устраивает. Налицо переобучение – модель получилась слишком сложной для данных.

• Обучающая ошибка получилась высокой. Возникла ситуация недообучения. Либо выбранная модель слишком простая для этих данных, либо не хватает самих данных (объема или каких-то фич).

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

100 лучших игр и упражнений для успешного супружества и счастливого родительства
100 лучших игр и упражнений для успешного супружества и счастливого родительства

Книга известного психолога-консультанта Михаила Кипниса представляет собой сборник психологических игр, упражнений и занимательных текстов, которые помогут выстроить эффективную и увлекательную групповую работу тренерам, педагогам, семейным психологам и консультантам. Описание каждого упражнения включает в себя рекомендации по его применению, необходимые материалы, инструкции участникам, оценку необходимого для его проведения времени и размера группы, вопросы для дискуссии с участниками и выводы, к которым они должны прийти.Супружеские пары, родителей и их детей это пособие обучит открытой и конструктивной коммуникации, установлению эмоционально богатых, доверительных отношений, укрепит партнерство между взрослыми членами семьи и детьми, даст почувствовать радость, ответственность и счастье семейного общения.

Михаил Шаевич Кипнис

Карьера, кадры