Читаем Роман с Data Science. Как монетизировать большие данные полностью

Второго октября 2006 года компания Netflix объявила конкурс «Netflix Prize»: кто улучшит текущие рекомендации Netflix на 10 % по метрике RMSE, получит один миллион долларов призовых. В сентябре 2009 года команда победителей «BellKor’s Pragmatic Chaos» получила свой миллион долларов. Соревнование длилось почти три года, задача была непростой.

Параллельно под эгидой научной конференции ACM SIGKDD такие соревнования проходили на платформе KDD Cup. Каждый год – это новое соревнование со своими организаторами, данными и правилами.

Все эти события привели к созданию платформы для коммерческих соревнований по машинному обучению – Kaggle.com. Компания была основана в 2010 году тремя людьми и поглощена Google в 2017 году. Сейчас Kaggle предоставляет много сервисов, но первый и самый главный – соревнования по машинному обучению с хорошими призовыми. Система полностью аналогична конкурсу от Netflix: какая-то компания публикует свои данные и правила участия, по которым будут выбираться победители. В день окончания баллы всех команд фиксируются. Победители получают призы, а компания – решение своей задачи. Часто решение и его описание потом публикуются на форуме.

В соревнованиях по машинному обучению прокачиваются навыки практического использования ML и создания фич на базе датасета. Там может поучаствовать каждый зарегистрировавшийся и получить очень хороший опыт. Все выглядит отлично, не правда ли? Но в них есть другая сторона – эти решения нельзя использовать в лоб, можно взять оттуда лишь некоторые идеи. Например, сам Netflix заявил [65], что алгоритм – ансамбль победителей состоял из 107 субалгоритмов, из которых только два дали самый значимый результат: факторизация матриц (SVD) и ограниченная машина Больцмана (RBM). В компании не без труда внедрили эти два алгоритма в рабочую систему. Сработало правило Парето: 20 % усилий (2 алгоритма) дали 80 % результата. Отмечу еще раз: они не стали внедрять всего монстра целиком, а взяли всего лишь два его элемента. Победивший алгоритм невозможно внедрить, он очень ресурсоемкий и сложный. Его поддержка стоила бы космических денег.

Это и есть основной недостаток решений, полученных на таких соревнованиях, – нет ограничений на вычисления и простоту результата. Такие решения часто будут нежизнеспособными конструктами. И тем не менее я все равно призываю вас участвовать в соревнованиях, это полезно. Подсматривайте решения на форумах и повторяйте их, учитесь делать фичи – это непросто, но в них заключено искусство ML. Не нужно занимать топовые места, достаточно, чтобы метрики ваших решений были процентов на пять хуже лидера. Даже если вы просто окажетесь выше медианы оценок – уже хорошо. Так вы научитесь многому.

Если бы у меня был выбор между двумя кандидатами: первый занимает призовые места на Kaggle и имеет за плечами десятки моделей, а второй реализовал всего две, но придумал задачу, решил, внедрил ее и доказал метриками, что она зарабатывает деньги для компании, – я бы предпочел второго. Даже если ему не придется повторять на новом месте все эти этапы, я могу сделать вывод, что он способен видеть картину целиком, а значит, сможет говорить на одном языке с людьми, которые будут внедрять продукт его труда, без проблем будет понимать ограничения и требования смежных департаментов.

Искусственный интеллект

Искусственный интеллект (AI) – очень модный термин, и я его ни разу не использовал в моей книге, хотя занимаюсь именно им. Словосочетание data mining я услышал еще в начале двухтысячных, когда работал в StatSoft. За этим маркетинговым термином кроется обычный анализ данных, сделанный из нескольких компонент. Мы с коллегами шутили, что весь этот data mining настоящие спецы делают на коленке. Через некоторое время возник новый термин – машинное обучение, он гораздо лучше зашел у специалистов, потому что действительно описывал новую область. Третий термин – большие данные, хайп вокруг которых сейчас уже поутих. Просто технология не оправдала слишком больших надежд, которые были на нее возложены. Я не помню, чтобы на конференциях ACM RecSys хоть раз слышал выражение big data, хотя часть игроков, которые там участвуют, обладают очень большими данными (Amazon, Google, Netflix). Компании используют их только для брендинга и продаж своих услуг, чтобы показать, что они в тренде. Иначе их обойдут конкуренты.

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

Всё закончится, а ты нет. Книга силы, утешения и поддержки
Всё закончится, а ты нет. Книга силы, утешения и поддержки

«Всё закончится, а ты нет» – это книга-подорожник для тех, кто переживает темную ночь души. Для тех, кому нужна поддержка и утешение. И слова, на которые можно опереться.В новой книге Ольга Примаченко, автор бестселлеров «К себе нежно» и «С тобой я дома», рассказывает о том, за что держаться, когда земля уходит из-под ног. Как себе помочь, если приходится прощаться с тем, что дорого сердцу, – будь то человек, дом или ускользающая красота. Как прожить жизненные перемены бережно к себе – и вновь обрести опоры. Несмотря ни на что, жизнь продолжается, и в ней по-прежнему есть место мечтам, надежде и вере в лучшее.Эта книга – остров со множеством маяков, которые светят во все стороны. И каждый корабль, попавший в свой личный шторм, увидит именно тот свет, который ему нужен.В формате PDF A4 сохранён издательский дизайн.

Ольга Примаченко

Карьера, кадры / Самосовершенствование / Психотерапия и консультирование / Эзотерика / Образование и наука
Как мы меняемся (и десять причин, почему это так сложно)
Как мы меняемся (и десять причин, почему это так сложно)

Каждый из нас мечтает что-то поменять в своей жизни – избавиться от деструктивных привычек, чему-то научиться, стать более организованным или похудеть. Однако большинство так и не меняются. Психотерапевт и специалист в области психического здоровья Росс Элленхорн считает, что мы избираем неверный подход. Прежде всего нужно проанализировать, что нас удерживает от изменений. На примерах из своей практики автор подробно рассказывает о десяти основных причинах, которые не дают нам измениться. Вы сможете понять мотивы саморазрушительного поведения и вернуть веру в себя.Издание будет интересно всем, кто интересуется психологией и саморазвитием.На русском языке публикуется впервые.

Росс Элленхорн

Карьера, кадры / Управление, подбор персонала / Финансы и бизнес