Для ответа на этот вопрос проведём моделирование на разных генофондах. Возьмём в качестве модельных объектов три иерархически соподчинённых генофонда: 1) Белоруссия; 2) Черноморо-Балтийский регион (для краткости назовём его «Западным»), который включает в себя, кроме Белоруссии, также Украину, Молдавию, Литву, Латвию, Эстонию; 3) Северная Евразия, которая включает в себя и Черноморо-Балтийский, и все остальные регионы бывшего СССР. Мы видим, что каждый последующий генофонд включает в себя, как матрёшка, предыдущий и позволяет прослеживать закономерности более высокого порядка. Такой «принцип матрёшки» позволяет выявлять общее и особенное в пространственной структуре каждого из генофондов, а с методической стороны даёт возможность провести анализ с внутренним контролем. В качестве модельных генетических маркёров возьмём два самых подробно изученных. Это, конечно же, группы крови — всем известные как I, II, III и IV группы локуса АВ0 и резус (RH).
Сравнение средних частот (М) и межпопуляционных различий (GST
) для исходных («таблица») и картографированных («карта») значений признаковЧтобы критически оценить новую информацию, которую вносит учёт географического ареала популяций, рассмотрим для каждой из «матрёшек» по два распределения. Первое распределение («табличное») характеризует данные таблиц до картографирования — частоты гена в изученных популяциях. А второе распределение («карточное») характеризует карты — картографированные значения. Мы не будем утомлять читателя гистограммами (они приведены на картах модельных регионов в [Балановская и др., 1994; Балановская, Нурбаев, 1995]), и приведем только средние значения частоты аллеля (М) и межпопуляционные различия (GST
) до и после картографирования (Сравнение таблиц и карт показывает, что нет единой закономерности изменений при картографировании: всё зависит от самого гена, от особенностей его распределения и изученности. Каждый из показателей (М и GST
) при переходе от таблиц к картам может как уменьшаться, так и увеличиваться!В чем причина таких разночтений? То новое, что вносит карта, связано с двумя основными факторами, действующими противоположно.
Первый фактор — большее число анализируемых точек. На карте всегда больше число промежуточных значений, чем в таблице: число узлов сетки N всегда намного больше числа исходных популяций К. Поэтому только за счёт появления множества промежуточных значений между опорными точками дисперсия (и, соответственно, GST
) картографированных значений уменьшается (по сравнению с дисперсией табличных значений), а гистограмма на карте становится более плавной.Второй фактор — неравенство популяционных ареалов — обычно сказывается противоположным образом, то есть увеличением разнообразия карты (GST
). Этот фактор оказывается ведущим тогда, когда есть связь между частотой признака и площадью, занятой данным интервалом частоты. Этот фактор не только увеличивает разнообразие, но и меняет среднюю частоту признака на карте, сдвигая его в сторону значений, распространённых на большем ареале.Например, пусть зоны с минимальными (частота равна 0) и зоны с максимальными (частота равна 1) частотами признака резко различаются по площади их ареалов. Пусть площадь зоны минимумов (Nmin
) в 10 раз меньше, чем площадь зоны максимумов (Nmax):(Nmin)=10. А в таблице число изученных популяций для каждой из зон одинаково: Kmax=Kmin. Тогда из таблицы мы получим среднее значение частоты равное 0.5.А на карте — среднее значение частоты будет близко к единице (0.91). И карты дадут более корректный результат — он учитывает географическое пространство и размер популяционных ареалов. И этот пример невыдуманный. Например, мы можем изучить множество популяций кавказских народов на небольшом пространстве Кавказских гор — и столько же популяций на бескрайних просторах Сибири. Причём изученность народов (среднее число популяций, изученных для одного народа) может быть одинаковой — просто размеры этнических ареалов резко различны на Кавказе и в Сибири. И, характеризуя изменчивость Евразии, мы не имеем права смещать её средние оценки в сторону меньшего по площади Кавказа только потому, что на этой небольшой территории проживает множество народов.
Есть и третий фактор — влияние интерполяционной процедуры.
Но его воздействие на изменчивость карты неоднозначно и зависит от параметров интерполяции.