Читаем Русский генофонд на Русской равнине полностью

Смысл подобного преобразования станет ясен, если представить, что первая карта показывала распространение одного из аллелей двуаллельного гена. В этом случае вторая карта (дополнение до единицы) покажет распространение второго аллеля: ведь в каждой популяции, в каждой точке карты частота второго аллеля должна равняться единице минус частота первого аллеля! В результате мы получаем карты обоих аллелей, необходимые для дальнейших расчётов. Такой способ получения карты второго аллеля корректнее, чем независимое построение карты второго аллеля: лишь этот способ обеспечивает сумму частот равную единице в любой точке обеих карт. А это требование порой является необходимым для генетико-статистических расчётов.

Кроме вычитания, с картой можно проводить любые другие арифметические или алгебраические действия.

2) ОПЕРАЦИИ С ГРУППОЙ УЗЛОВ. Самым частым случаем преобразований в плывущем окне является построение трендовой карты. В этом случае значение в узле новой карты зависит не только от значения того же узла исходной карты, но и от значений в соседних узлах. Например, значения во всех соседних узлах усредняются, и это усреднённое значение записывается в «центральный» узел создаваемой трендовой карты. Затем мы переходим к следующему узлу, теперь он на время становится «центральным». У него уже несколько иные соседи, и мы проводим с ним ту же операцию. В результате по всей карте как бы проплывает окно заданного размера. В рамках этого окна мы проводим усреднение, и каждый узел карты поочерёдно становится «центральным». Результирующая карта по сравнению с исходной выглядит сглаженной. Благодаря усреднению соседних значений, резкие локальные скачки значений признака выровнялись, сгладились, и мы видим основные черты рельефа карты, не затушёванные локальными всплесками. Степень сглаживания будет зависеть от размера окна. Если мы выберем окно размером 3x3 узла сетки (один «центральный» узел и по одному соседу с каждой стороны, то есть восемь ближайших соседей для каждого «центрального» узла), то сглаживание будет очень небольшим. Если же размер окна будет 15x15 узлов сетки карты, то вся карта предстанет существенно выровненной.

В пакете GGMAG реализованы и много более сложные процедуры. Плывущее окно может быть не только постоянного, но и меняющегося размера. Например, мы можем задать минимальный размер окна 5x5 узлов, и для каждого узла этот размер будет автоматически увеличиваться до тех пор, пока число опорных точек, попавших в окно, не достигнет заданной величины. Тогда для разных узлов карты размер окна и соответственно степень сглаживания окажется разной, но в каждом случае вычисления будут проведены примерно с одной и той же степенью достоверности, поскольку результаты будут опираться хотя и на разное число интерполированных значений, но на одно и тоже число значений в опорных точках. Использование техники меняющегося окна необходимо, когда на карте есть и области с густым и разнообразным населением (например, Кавказ), и области с редким населением на огромных территориях (например, коренное население Сибири).

Эта техника плывущего окна — как постоянного, так и меняющегося размера — может применяться далеко не только для построения трендовых карт. Ведь вместо усреднения мы можем проводить любые другие вычисления по значениям, попавшим в окно, — например, рассчитать их дисперсию. И действительно, наиболее перспективное применение техники меняющегося окна состоит в построении карт межпопуляционного разнообразия, когда для каждой точки карты рассчитывается значение межпопуляционной изменчивости в окрестностях этой точки.

3) ОПЕРАЦИИ СО ВСЕМИ УЗЛАМИ КАРТЫ. Особым случаем преобразования отдельной карты является моделирование трендов с использованием многочленов Чебышева. В этом случае анализируется вся совокупность значений карты, и результирующая карта представляет значения трендового признака, вид которого зависит от исходных значений карты и от выбранной степени многочлена.

Анализ одновременно всех значений карты используется, например, и при расчёте корреляции карты с географическими координатами. В этом случае карта рассматривается как простая таблица, для каждой ячейки которой (узла) известна географическая долгота, широта и значение признака. По этим значениям вычисляется корреляция признака и географических координат. В зависимости от используемой формулы можно рассчитать обычный коэффициент корреляции, частную или множественную корреляцию.

ОПЕРАЦИИ С НЕСКОЛЬКИМИ КАРТАМИ

Перейти на страницу:

Похожие книги