Если мы видим выражение 3 + 2, то наша естественная реакция состоит в том, чтобы, как делали реисты, осуществить сложение и поставить 5. Но при этом мы теряем структуру исходного выражения, сам факт того, что это сложение. Следовательно, мы не можем рассуждать в общем виде о сложении. Символическая алгебра позволяет нам рассуждать о структурах. Можно сказать, что символическая алгебра сосредотачивается на синтаксисе уравнения, забывая о его содержании и значении до получения конечного решения. В то же время алгебра Виета предполагала, что объекты, с которыми мы работаем (константы и неизвестные), необязательно должны быть числами. Они могут быть чем угодно — углами в тригонометрии, геометрическими элементами, — всем, к чему применимы сложение, умножение, возведение в степень и так далее. Алгебра, которая ранее была только ответвлением арифметики, где акцент делался на решении числовых задач, теперь превращается в универсальный язык математики.
Рене Декарт
В данном месте нашего повествования должно стать очевидным, какое значение имела для нашего героя работа Виета, с которой Ферма познакомился в Бордо. Действительно, мы уже наблюдали у Ферма тенденцию идти от частного к общему, анализировать структуру уравнений, решающих целый класс задач, — преимущество, которое он отдавал общему методу перед конкретным решением локальной задачи. Виет не только предлагал методы и решения, он создал математическую программу, доведенную Ферма до последних выводов. Но он был не один. Другой великий мыслитель, Рене Декарт, пришел к таким же заключениям. Они втроем — Виет, Декарт и Ферма — создали методы современной математики, навсегда разорвав их связь с элегантными построениями Евклида и древнегреческих геометров. Туда, где раньше царствовали чертежи, построенные с помощью линейки и циркуля, теперь пришли алгебраические действия, совершаемые каждый раз над все более необычными объектами. Алгебра действительно превратилась в их руках в преимущественный способ математических рассуждений.
Очевидно, что Ферма многим обязан в математике Виету, однако остается спорным, до какой степени последний повлиял на Декарта. Некоторые историки, например Богран, предполагают знакомство Декарта с работами Виета, другие считают, что Декарт, по его же собственным словам, пришел к своим результатам независимо. Но так как он систематизировал лучше Виета, его запись оказалась намного более ясной (вспомним, что понятная запись в математике может озарить, в то время как неясная способна сбить с мысли). Также его теория уравнений была настолько выше теории Виета, что через одно поколение она полностью победила, оставив последнего в забвении. Там, где Виет пользовался изнурительными казуистиками, очень соответствующими образу мысли адвоката, Декарт рассуждал как философ.
Несмотря на свои революционные догадки, Виет в каких- то аспектах оставался привязанным к прошлому. Для него неизвестная, возведенная в квадрат, имела очень специфическое значение: это настоящий, геометрический квадрат, площадь. То же самое для неизвестной, возведенной в куб: это куб, объем. И, несмотря на то что он был способен представить себе большие степени (четвертые, пятые), не имеющие очевидного геометрического значения, ему не удалось сделать основополагающего шага: подумать о том, что многочлен может быть неоднородным, то есть его члены могут иметь различные степени: ax3
+ bx2 + cx = d. Для него подобное было как сложение груш с яблоками, линии с кубом, квадрата с точкой. Это не имеет геометрического смысла. Таким образом он сформулировал закон однородности: многочлены должны быть суммами одночленов одной и той же степени (квадраты с квадратами, кубы с кубами).Очевидно, что на плечах Виета еще держалась вся тяжесть греческого наследия, в котором числа не имеют измерения, а геометрические фигуры — имеют. Комбинировать их нет смысла. Для греков понятие измерения неизбежно связано с умножением геометрических элементов: две перемноженные линии дают прямоугольник, а прямоугольник, умноженный на третью линию, дает параллелепипед.