Ферма не создавал прямоугольную систему координат, которая так хорошо знакома нам сегодня. Его аналитическая геометрия одноосная: определяется только ось абсцисс. Однако очевидно, что он скрыто использует ось ординат при определении расстояний.
На рисунке показаны элементы аналитической геометрии Ферма. У нас есть уравнение с двумя неизвестными x и y и константой c, f(x, y) = c. Расстояние х0
— это явно значение абсциссы, в то время как ордината задана значением длины отрезка у0. Заметьте, что угол необязательно прямой, как это было бы в современной системе декартовых координат. На самом деле угол произволен (более поздние авторы поняли, что намного проще сделать угол прямым). Точка, которая движется по геометрическому месту точек, — А. Мы можем видеть, как она движется к положению А' которое соответствует абсциссе х1 и ординате у1. Следует заметить, что f(x0, у0) - f(x1, у1) = c, то есть уравнение выполняется для всех точек А геометрического места точек, и наоборот, точки А полностью определяются уравнением. Это ключевое соответствие между геометрией и алгеброй, предоставляемое аналитической геометрией (запись современная — Ферма не использовал запись функции f(x, у)).В этом изложении есть скрытое понятие, которое было основополагающим для развития анализа: непрерывное изменение. Используя единственную ось, Ферма сосредоточился на том, как движется точка по кривой, определяющей геометрическое место. Это концептуально отличается от процесса графического представления точек на плоскости с двумя координатными осями и помещения между ними кривой, как большинство из нас научилось делать при составлении графика. Видение Ферма динамично: оно соответствует точке, двигающейся по некоей траектории, и, следовательно, почти случайно Ферма придал физическую реальность аналитической геометрии, которая оказалась основополагающей в последующих работах Ньютона, Лейбница и семьи Бернулли. Другая отличительная характеристика системы Ферма в том, что она включает в себя только положительные величины в области и абсцисс, и ординат, поэтому его кривые всегда находятся в первой четверти плоскости и, следовательно, иногда теряется от половины до трех четвертей их протяженности. Парабола с вершиной в начале координат и фокусом на оси х, например, была бы только половиной параболы.
Центральная теорема, которую Ферма доказывает в своем Isagoge, состоит в том, что все конические сечения, помимо прямой линии и окружности, могут быть выражены общими уравнениями второй степени или первой степени (в случае с прямой). Ферма делит все возможные уравнения первой или второй степени на семь "канонических" случаев, доказывая, что любое уравнение первой или второй степени можно свести к одному из них: они относятся, соответственно, к окружности, эллипсу, параболе, двум видам гиперболы и двум видам прямой линии. Доказательства для каждого случая намного более подробные, чем те, что обычно давал Ферма, но даже здесь было опущено несколько шагов, которые казались математику очевидными, поскольку они вытекали из классических сочинений, таких как "Данные" Евклида, трактат "Конические сечения" Аполлония или работа Виета.