Действительно, Папп столкнулся с задачей, в которой ему потребовалось получить максимум. Такие задачи привычны для нас сегодня: например, найти геометрическую фигуру, обладающую наибольшим объемом с наименьшей площадью поверхности (сфера). Или, в качестве обратной задачи, определить, являются ли пчелиные соты оптимальной формой покрытия плоскости. Как видно, у данного типа задач много общего с задачами на оптимизацию. В любом случае, внимание Ферма привлекло то, что максимум, который искал Папп, был "единственным и исключительным". Пользуясь своими гуманитарными способностями, Ферма смог понять автора, что считал невозможным сам переводчик Паппа на латынь, Федерико Коммандино. Папп говорил о том, что экстремум является единственным. На основе этого, а также опираясь на работы Виета, Ферма придумал, как составить квадратное уравнение, отвечающее условиям задачи Паппа, у которого было бы только одно решение.
Вспомним, что у квадратного уравнения обычно два корня (мы говорим "обычно", поскольку во времена Ферма некоторые корни — от иррациональных до комплексных, не говоря уже об отрицательных — не допускались). Дело в том, что Виет изобрел метод выражения коэффициентов уравнения через два его корня, который он назвал синкризис.
Ферма воспользовался данным методом для выполнения действий со своим квадратным уравнением в инновационной форме. Он утверждал, что существует один корень х, а другой корень он назвал x + h, где h, как он пояснял, может быть любым значением. Далее следовал решительный и странный шаг. Ферма "приравнял" уравнение со значением х к уравнению со значением х + h: f(х) = f(x + h). Он назвал эту операцию "приравнять", воспользовавшись термином, взятым у Диофанта. Однако на самом деле во всей теории уравнений Виета не существует формального математического обоснования для осуществления этой странной операции.
Далее, в довершение всего, Ферма занялся тем, чтобы исключить некоторые члены, содержащие h, с помощью деления на h:
f(x)/h = f(x + h)/h
Наконец, он постановил, что h равно нулю и, следовательно, оба корня — это один-единственный корень. Это способ зафиксировать один корень и сделать так, чтобы второй корень равнялся ему. Но на самом деле казалось, что Ферма в данном случае просто разделил на ноль без какого-либо теоретического обоснования.