Читаем Самые знаменитые головоломки мира полностью

35. Можно представить себе, что объем, заключенный внутри мяча, разбит на огромное число узеньких пирамид, все вершины которых расположены в центре мяча, а основания лежат на его поверхности. Мы знаем, что объем пирамиды равен произведению площади ее основания на 1/3 высоты. Следовательно, объем шара равен сумме площадей оснований пирамид, то есть сферы, умноженной на 1/3постоянной высоты (радиуса). Поскольку объем шара численно равен площади сферы, отсюда следует, что 1/3 радиуса равна 1. Значит, радиус футбольного мяча равен 3, а его диаметр – 6 дюймам.[26]

36. Озеро содержало ровно 11 акров; ответ «около 11 акров» не достаточно правилен. Точный ответ получается с помощью известной теоремы Пифагора, утверждающей, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов.

На рисунке у треугольника ABD длина катета AD равна 9, а длина BD – 17, поскольку 9 × 9 + 17 × 17 = 370, что составляет площадь наибольшего поля. АЕС – прямоугольный треугольник, а равенство 52 + 72 = 74 показывает, что квадрат со стороной АС имеет площадь в 74 акра. CBF – также прямоугольный треугольник. Складывая квадраты его катетов, мы находим, что квадратное поле со стороной ВС имеет площадь, разную 42 + 102 =116 акрам. Площадь нашего исходного треугольника ABD, очевидно, составляет половину от 9 × 17, то есть равна 76,5 акра. Поскольку суммарная площадь прямоугольника DECF и двух прямоугольных треугольников АЕС и CBF равна, как легко подсчитать, 65,5 акра, то, вычитая эту величину из 76,5, мы находим, что площадь треугольного озера составляет в точности 11 акров.

37. Решения показаны на рисунках.

38. После замужества три невесты стали носить имена: Китти Браун, Нелли Джонс и Минни Робинсон, Китти весила 122, Нелли – 132, а Минни – 142 фунта.

39. Каждый камень в сережках весил 5 каратов, так что стоил он 2500 долларов, а цена обоих камней составляла 5000 долларов. Вес камней различной величины составил соответственно 1 карат (100 долларов) и 7 каратов (4900 долларов), а их суммарная стоимость также равна 5000 долларов.

40. В наилучшем решении требуется провести всего лишь два прямых разреза и перевернуть одну часть другой стороной кверху – прием, обычный в столярном деле, о котором не подумал ряд почитателей Евклида.

Не играет роли, если угол, образованный отрезком BD со стороной доски, окажется более или менее острым. Нужно просто провести прямую из середины левой стороны доски Е в середину BD. Затем следует опустить перпендикуляр из угла G на ЕС. Перевернув теперь часть А другой стороной кверху, можно сложить квадрат, как показано на рисунке.

41.

42. Разговор происходил в 9 ч 36 мин утра. Одна четверть времени, прошедшего с полуночи до момента разговора, равна 2 ч 24 мин, а половина времени от момента разговора до полуночи составляет 7 ч 12 мин; в сумме как раз и получается 9 ч 36 мин.

Если бы Мак-Гуир не пожелал Клэнси доброго утра (это указывает на то, что разговор происходил до полудня), то правильным ответом могло быть в равной мере и 7 ч. 12 мин. вечера.

43. Если минутная стрелка движется в 12 раз быстрее часовой, то они сливаются 11 раз в течение каждого 12-часового периода. Приняв одиннадцатую часть 12 ч за нашу основную константу, мы находим, что слияние стрелок будет происходить через каждые 65 5/11 мин, или через каждые 65 мин 27 3/11 с. Следовательно, в следующий раз стрелки сольются в 1 ч 5 мин и 27 3/11 с.

Ниже приведены моменты 11 слияний стрелок в течение каждого 12-часового периода.

12 ч 00 мин 00 с

1 ч 05 мин 27 3/11 с

2 ч 10 мин 54 6/11 с

3 ч 16 мин 21 9/11 с

4 ч 21 мин 49 1/11 с

5 ч 27 мин 16 4/11 с

6 ч 32 мин 43 7/11 с

7 ч 38 мин 10 10/11 с

8 ч 43 мин 38 2/11 с

9 ч 49 мин 05 5/11 с

10 ч 54 мин 32 8/11 с

[Теперь, когда вы освоились с техникой решения задач такого типа, вы можете попытаться решить следующую, по-видимому, более трудную головоломку. Предположим, что у часов – три стрелки, слившиеся в полдень. Третья стрелка, конечно, секундная. Когда в следующий раз сольются три стрелки?

На самом деле с помощью приведенной выше таблицы и некоторой проницательности задача решается гораздо легче, чем может показаться на первый взгляд. – М.Г.]

44. Черные бумажные кусочки – это не более чем ловушка. Их следует сложить таким образом, чтобы в центре получилась маленькая белая лошадь, как показано на рисунке.

Именно этот трюк с белой апингтонской лошадью сделал популярным выражение: «О, но это же лошадь другой масти!»

45. Всего было три полностью слепых змея и три змея полностью зрячих.

46. Существует много простых способов выполнить задание за 15–18 ходов, но план, приведенный на рисунке, где мы возвращаемся в исходную точку через 14 ходов, кажется наилучшим возможным ответом.

Перейти на страницу:

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей