Теория импульса складывается очень рано и сохраняется, несмотря на способность человека точно воспринимать движение в реальном времени. Можно ли как-то вырваться из ее оков? Придумали ли педагоги способ обучать ньютоновским представлениям о движении? В большинстве случаев при преподавании законов Ньютона используется решение задач, однако это не помогает учащимся изменить устоявшиеся взгляды. Это отчетливо проявилось в исследовании студентов, которые в течение двух лет занимались физикой по четыре с половиной часа в неделю[141]. За это время они решили сотни, если не тысячи упражнений. Чтобы определить, дало ли это какой-то эффект, исследователи провели тест на концептуальное понимание движения, призванный отличить рассуждения, основанные на импульсе и ньютоновских принципах, и сопоставили результаты с числом задач по физике. Результаты не воодушевляли. Студенты, решившие три тысячи задач, обнаруживали основанные на импульсе рассуждения с той же вероятностью, что и студенты, решившие всего триста.
Решение тысяч задач, может быть, не улучшает понимание движения, однако дает явный положительный эффект: улучшает сами навыки решения физических задач. Студент учится узнавать, какие абстрактные формулы применить в конкретной ситуации. От него не требуют раздумывать над смыслом этих формул. Достаточно подставить правильные числа в правильные уравнения, и математика выдаст результат.
Если задачники не помогают улучшить понимание движения, то что же помогает? Многие исследователи, изучавшие преподавание физики, предлагали обучение в микромире — виртуальной среде, где физические законы усваиваются благодаря симуляции взаимодействий и экспериментов[142]. Такой подход имеет сразу несколько привлекательных черт. С его помощью можно проиллюстрировать любые законы физики, не только ньютоновские. Можно имитировать физические взаимодействия, которые не получится показать в классной комнате. Можно измерить любые физические параметры, не ограничиваясь секундомером и линейкой. По своему образовательному потенциалу микромиры далеко превосходят старую скучную реальность.
Возможно, виртуальные миры привлекательны. Но эффективны ли они? В одной работе этот вопрос был рассмотрен на примере популярной компьютерной игры Enigmo, в которой игроку нужно направлять падающие капли из одной части микромира в другую, манипулируя местом, куда они падают[143]. Капли подчиняются ньютоновским принципам, в том числе, вопреки стойкому неверному представлению, следуют по параболической траектории. В исследовании участвовали ученики средней школы. Одна половина шесть часов на протяжении месяца играла в Enigmo, а другая — в стратегию Railroad Tycoon, где никаких физических принципов нет. В конце обе группы прошли получасовое занятие, посвященное законам Ньютона. Концептуальное понимание движения измеряли трижды: до и после компьютерных игр и после занятия.
Рис. 5.4. Компьютерные игры, построенные на законах Ньютона, — например, эта, где надо направлять капельки воды по параболическим траекториям, — мало помогают ученикам узнавать и применять эти принципы за пределами игровой среды
Как и предполагалось, у детей, игравших в Enigmo, результаты ко второму тесту улучшились, но всего на 5%. В то же время занятия физикой повысили результаты на целых 20% и принесли такую же пользу ученикам, игравшим в Railroad Tycoon. Другими словами, тридцать минут занятий оказались в несколько раз эффективнее, чем шестичасовое погружение в микромир, действующий согласно изучаемым принципам. Аналогичные результаты наблюдались и при использовании других микромиров[144]. В лучшем случае они обеспечивали те же результаты, что и стандартное обучение, а в худшем — оказывались пустой тратой времени, давая знания, которые не применялись за пределами игры.
То, что знания, приобретенные в микромирах, не применяются в реальном мире, имеет много плюсов. Дело в том, что популярные компьютерные игры направлены прежде всего на развлечение и редко иллюстрируют законы Ньютона. Возьмите Super Mario Brothers для Nintendo. Марио и его братец Луиджи не сохраняют горизонтальной скорости. Когда они подпрыгивают вертикально вверх, платформа выезжает у них из-под ног, а предметы с движущихся платформ падают прямо вниз. Какие-то объекты подвержены действию гравитации, какие-то — нет. Гравитация вообще работает в игре непоследовательно, позволяя Марио прыгать в два раза выше своего роста, а затем падать в восемь раз быстрее, чем надо, учитывая скорость подъема[145]. Конечно, игроку вряд ли придет в голову, что можно прыгнуть выше собственного роста только потому, что у Марио это получается: это знание отправляется в карантин и используется только в данной игровой вселенной. Ученики, играющие в Enigmo, точно так же отправляют в карантин знания законов Ньютона, которые приобрели в ходе игры.