Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Глава 4

Геометрические задачи на проекционном чертеже

Умение правильно построить сечение по трем точкам упрощает решение некоторых геометрических задач.

Прежде чем приступать к решению задач этой главы, разберите несколько примеров на построение сечений и теней.


Пример 1. Построить сечение куба, проходящее через точки PQ и R, расположенные так, как показано на рис. 4.1.

Точки P и Q (и точки Q и R) можно соединить сразу, так как они лежат в одной из граней куба.

Чтобы построить прямую, по которой плоскость сечения пересечет нижнее основание куба (эта прямая называется следом), нужно знать две точки, принадлежащие этой прямой. Одна точка нам дана — это точка R. Другую точку найдем, если продолжим до пересечения отрезки DC и PQ. Это можно сделать, так как указанные отрезки лежат в одной плоскости и, как видно из рис. 4.1, не параллельны. Полученная в результате точка S будет лежать в плоскости нижнего основания, так как вся прямая DC лежит в этой плоскости.

Через точки R и S мы теперь проведем след, который оставит плоскость сечения на плоскости нижнего основания. В результате получим точку T. После того как точки T и P соединены, сечение построено.

Несколько усложним задачу.


Пример 2. Построить сечение куба, проходящее через точки P, Q и R, расположенные так, как показано на рис. 4.2.

В этом случае одной вспомогательной точки окажется недостаточно. Хотя из рис. 4.2 видно, что сечение не пересечет плоскость нижнего основания, нужно построить след плоскости сечения на нижнем основании. Точку S мы построим так же, как в примере 1, а вторую точку T найдем, продолжив отрезки RQ и AD. След ST пересечет прямую BC в точке U. Так как точки U и P лежат в плоскости сечения, то, соединив их, найдем точку V, принадлежащую сечению куба, которая позволит завершить построение.


Пример 3. Построить сечение куба, проходящее через точку R, расположенную на передней грани куба, и точки P и Q — на ребрах задней его грани (рис. 4.3).

И на этот раз нам поможет построение следа плоскости сечения на плоскости нижнего основания. Чтобы было ясно, что точка R лежит на плоскости передней грани куба, спроецируем ее на основание. Проекция прямой PR и прямая PR пересекутся в точке S, принадлежащей следу. Вторую точку U следа мы получим, продолжив до пересечения BC и PQ. След US пересечет куб по отрезку . Продолжим  TR до пересечения с DD1 в точке G. Чтобы закончить построение, получим еще одну вспомогательную точку F так, как это было сделано в первом примере.

Построение теней осуществляется с помощью тех же самых приемов. При этом нужно в качестве вспомогательной точки использовать проекцию источника света на плоскость, на которую падает тень.

Построим, например, тень, отбрасываемую вертикальной спичкой AB на плоскость P (концом В спичка упирается в плоскость), если источник света расположен в точке Q, а точка Q1 есть проекция точки Q на плоскость P (рис. 4.4, а). Проведем две прямые AQ и BQ1, пересекающиеся в точке А1. Отрезок А1В и будет тенью спички AB.

Если спичка AB расположена между плоскостью P и источником света Q произвольным образом, то построение тени показано на рис. 4.4, б. Предполагается, что проекции точек А, В и Q (это точки СD и Q1 соответственно) на плоскость P заданы или могут быть найдены. Вместо того чтобы строить тень спички AB, мы строим тени А1С и В1D двух вертикальных спичек AC и ВD, а затем, соединив точки А1 и В1, получаем нужную тень. Проекция спички AB на плоскость P фактически задана. Это отрезок CD. Тенью, отбрасываемой этой спичкой на плоскость P, если источник света расположен в точке Q, будет отрезок А1В1.


Пример 4. Источник света расположен над плоскостью нижнего основания куба в точке Q на высоте, вдвое превышающей ребро куба (рис. 4.5). Построить тень, отбрасываемую кубом на плоскость его нижнего основания.

Разумеется, можно было бы построить отдельно тени, отбрасываемые каждым вертикальным ребром куба, а затем соединить соответствующие вершины. Однако здесь проще воспользоваться тем, что ребра верхнего основания куба параллельны плоскости нижнего основания. Следовательно, тенью, отбрасываемой верхним основанием куба, будет квадрат. Поскольку QQ1 вдвое больше ребра куба, то сторона этого квадрата будет равна 2 а (докажите).

Если мы проведем в кубе линию центров оснований и построим отбрасываемую ею тень, то не составит труда вычертить тень, отбрасываемую всем верхним основанием, а затем и всем кубом (см. рис. 4.5).


4.1. Дан куб ABCDА1В1С1D1. Через вершину А, середину E ребра BC и центр O грани СС1D1D проходит секущая плоскость. Найдите отношение, в котором она делит объем куба.

4.2. Дан куб ABCDА1В1С1D1 с ребром, равным единице. Найдите площадь сечения куба плоскостью, проходящей через вершину А и середины F и G ребер В1С1 и С1D1.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература