Решение оказывается иногда положительным, а иногда отрицательным. Это зависит от некоторых формальных отношений между объектным языком и его мета-языком или, говоря более конкретно, от того, является ли мета-язык в своей логической части
Если условие быть существенно богаче не выполнено, то обычно можно показать, что возможна интерпретация мета-языка в объектном языке. Это означает, что любому термину мета-языка можно сопоставить вполне определенный термин объектного языка, так что утверждаемые предложения одного языка оказываются соотнесенными с утверждаемыми предложениями другого языка. В итоге рушится предположение о том, что в мета-языке можно сформулировать удовлетворительное определение истины, так как благодаря этой интерпретации оказывается возможным реконструировать антиномию лжеца.
(Тот факт, что в своей внелогической части мета-язык обычно шире объектного языка, не влияет на возможность интерпретации первого во втором. Например, в мета-язык входят имена выражений объектного языка, хотя чаще всего они не встречаются в самом объектном языке, однако может существовать возможность интерпретировать эти имена в терминах объектного языка.)
Таким образом, мы видим, что условие быть существенно богаче является необходимым для удовлетворительного определения истины в мета-языке. Если же мы хотим сформулировать теорию истины в мета-языке, невыполняющем этого условия, то нам придется отказаться от идеи определить истину только с помощью тех терминов, которые были указаны выше (см. раздел 8). Тогда мы должны будем включить термин истинно или какой-либо иной семантический термин в список неопределяемых терминов мета-языка и выразить фундаментальные свойства понятия истины в ряде аксиом. В такой аксиоматической процедуре нет ничего существенно неверного и для некоторых целей она может оказаться полезной [15]
.Однако вовсе не обязательно использовать эту процедуру.
11. Построение (краткий очерк) определения [16]
.Определение истины можно очень просто получить из определения другого семантического понятия – понятия выполнимости.
Выполнимость есть отношение между произвольными объектами и определенными выражениями, называемыми
При определении понятия пропозициональной функции для формализованных языков мы обычно пользуемся рекурсивным методом, т. е. сначала описываем пропозициональные функции простейшего вида (что, как правило, не встречает трудностей), а затем указываем операции, посредством которых из простых могут быть построены более сложные функции. Такой операцией может быть, например, образование логической дизъюнкции или конъюнкции двух данных функций, т. е. соединение их с помощью слов или либо и. Предложение теперь можно определить просто как пропозициональную функцию, не содержащую свободных переменных.
Что касается понятия выполнимости, то мы могли бы попытаться определить его так: данные объекты выполняют данную функцию, если последняя становится истинным предложением, когда свободные переменные в ней мы заменяем именами этих объектов. В этом смысле, например, снег выполняет пропозициональную функцию