Читаем Шаг за шагом. Транзисторы полностью

В самом упрощенном виде эта операция выполняется так: на один из участков кристалла наносят кислотоупорное покрытие, а затем производят травление кристалла в кислоте. В итоге обе «одежды», появившиеся в результате диффузии, исчезают почти со всей поверхности кристалла и нужная структура остается лишь на небольшом участке. Именно к нему и припаивают выводы эмиттера и базы коллектора.

Мы описали лишь один из нескольких способов производства диффузионных транзисторов, причем описали его очень упрощенно. В действительности диффузионная технология, так же, впрочем, как и любая другая технология производства транзисторов, включает в себя большую серию очень тонких и точных технологических операций. Диффузионная технология хотя и сложнее сплавной, но зато позволяет более точно направлять сам ход процесса и получать транзисторные структуры с меньшим разбросом параметров. При этом сами рn-переходы получаются с ровной, плоской границей между зонами и, что особенно важно, получается ровная и очень тонкая, вплоть до нескольких микронов, база. А чем тоньше база, тем большие частоты может усиливать транзистор (рис. 92).



Рис. 92.Чем тоньше база, тем больше предельная частота, на которой может работать транзистор.


Поэтому в основном все высокочастотные транзисторы изготовляют диффузионным способом.

Обратите внимание на расположение выводов у сплавного и диффузионного транзисторов малой мощности (рис. 91). В первом случае сам кристалл становится базой, а во втором случае — коллектором. Кристалл устанавливают на кристаллодержатель, и он оказывается электрически соединенным с корпусом. Поэтому у большинства сплавных транзисторов средний вывод, соединенный с корпусом, — это вывод базы, а у многих диффузионных транзисторов средний вывод — это вывод коллектора. Чтобы не перепутать эмиттер с базой (это может кончиться трагично, если, например, подключить коллекторную батарею между коллектором и эмиттером и оставить «висящую базу»; см. рис. 89), на самом корпусе возле вывода эмиттера ставят желтую или белую точку.

Если диффузионная технология позволяет получать лучшие транзисторы, работающие не только на низких, но и на высоких частотах, то почему вообще не отказаться от сплавных транзисторов, которые работают только на низких частотах и производство которых порождает ненужное разнообразие типов приборов? Ответ на это наивное «почему» весьма прост: пока еще сплавные транзисторы делать проще и стоят они пока значительно дешевле. Представьте себе, что вы пришли в магазин, чтобы купить маломощный транзистор для усилителя НЧ, и вам предложили на выбор диффузионный триод стоимостью 2 рубля и сплавной — стоимостью 30 копеек. Конечно же, вы купите сплавной транзистор, который в низкочастотном усилителе работает не хуже диффузионного, а стоит во много раз дешевле.

Подобными соображениями руководствуются и разработчики радиоэлектронной аппаратуры, и специалисты, создающие сами полупроводниковые приборы. Задумываясь о том, нужно или не нужно производить какой-либо тип полупроводникового прибора, приходится учитывать не только его электрические характеристики, но и ту цену, которую за эти характеристики нужно заплатить. Потому что в итоге копейки и рубли стоимости транзистора, как, впрочем, любые рубли и копейки, пересчитываются во многие тысячи киловатт-часов электроэнергии, во многие тонны дорогостоящих материалов, во многие миллионы часов бесценного рабочего времени.

Сравнительная простота производства и невысокая стоимость — вот основные достоинства сплавных транзисторов, благодаря которым они остаются вне конкуренции во многих областях применения: в усилителях НЧ, ключевых схемах, генераторах импульсов и др.

Несколько слов еще об одном из многих методов производства транзисторов — о планарной технологии. Это новое направление, которое считается наиболее перспективным, использует для создания pn-переходов диффузию примесей.

Отличительная особенность планарной технологии в том, что все основные процессы создания pn-переходов в кристалле происходят с применением своего рода маски — тонкого защитного покрытия поверхности кристалла. Благодаря этому отпадает ряд трудных операций, а поверхность кристалла оказывается защищенной от всякого рода вредных воздействий. В результате получаются транзисторные структуры более высокого качества, в частности с меньшим поверхностным током, который суммируется с вредным обратным током коллектора Iко. Существует мнение, что применение планарной технологии позволит настолько уменьшить величину Iко, что во многих схемах вообще отпадет необходимость температурной стабилизации режима транзистора.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже