Выбор пал на простейшую кривую, известную под названием «синусоида». Примером синусоидальных (иногда говорят, гармонических) колебаний может служить «учебный» звук, а его график (рис. 4), так же как и график колебаний «учебной» струны и маятника (рис. 1 и 3), представляет собой типичную синусоиду. Чем же привлекла к себе внимание эта кривая?
Прежде всего нужно сказать, что синусоиду выбрала сама природа. Природа создала прибор — ухо животных и человека, которое может выделять из сложного звука простейшие составляющие, причем именно синусоидальные. Синусоида — очень популярная кривая. Графики бесчисленного множества различных колебаний — электрических, механических, световых, молекулярных, химических — имеют вид синусоиды или, во всяком случае, очень ее напоминают. Ну, и в заключение отметим, что, по-видимому, нужно было сказать в самом начале. Синусоида обладает рядом замечательных математических свойств, благодаря которым природа «считает» самым естественным, самым удобным, самым простым видом колебаний именно синусоидальные.
Итак, будем считать, что выбор сделан. Теперь, чтобы описать форму кривой сложного звука, достаточно указать эквивалентный ему набор синусоидальных колебаний, который называется спектром сложного звука. Спектр принято изображать в виде особого графика, напоминающего частокол (рис. 6). Из этого графика сразу же видно, каковы частоты отдельных составляющих и какую амплитуду имеет каждая из них.
В начале XIX века французский математик
Потом мы в основном будем иметь дело с периодическими звуками, спектр которых состоит только из гармоник. Если же в спектр, кроме гармоник, придется вводить еще какую-нибудь составляющую, то мы будем считать, что это «ЧП» — чрезвычайное происшествие, и сразу же обратим на него внимание.
Научившись с помощью спектра — набора гармоник — точно описывать форму сложной кривой, мы в какой-то мере исправили первое упрощение, сделанное при знакомстве с «учебной» струной. Струна не создает синусоидальные колебания, как это показано на рис. 1, и спектр колебаний реальной струны содержит целый ряд гармоник (рис. 6).
Знакомясь с колебаниями струны, мы сделали еще одно упрощение, и его также следует исправить. Для этого достаточно сильней натянуть «учебную» струну, чтобы в несколько раз повысить частоту ее колебаний. Без этого колебания воздуха, которые создает струна, вообще нельзя будет считать звуком. Почему?
Как видно из графиков, период колебаний в нашем примере составляет 0,1 сек, а значит, частота равна 10 гц. В то же время ухо воспринимает акустические колебания с частотами от 16 гц до 22 кгц. Слышимым звуком можно называть только те колебания, которые укладываются в этот диапазон. Неслышимые акустические колебания с частотой ниже 16 гц называют инфразвуком, а выше 22 кгц — ультразвуком.
Более подробно об этом будет рассказано в следующем разделе, который в основном посвящен замечательному творению живой природы — органу слуха.
Когда вы отвечаете на телефонный звонок или просто обращаетесь к собеседнику, то не задумываетесь о том, что стоит за простым выражением: «Я вас слушаю». За этими словами скрывается очень многое: тончайшие и во многом загадочные химические реакции, работа сложных, до сих пор не понятых инженерами физических приборов и вычислительных машин, о которых современная кибернетика пока только мечтает. Еще стоят за этими словами поражения и победы, борьба за право жить на Земле, полная драматизма бурная история, которая рассказывает о событиях, происходивших сотни миллионов лет назад.
Геологическая химия установила, что возраст Земли составляет примерно 5,3 миллиарда лет и что жизнь зародилась на нашей планете около миллиарда лет назад.
Миллиард лет — это очень большой срок. За это время можно было бы 300 миллионов раз пешком обойти вокруг земного шара или 15 миллионов раз «сходить» на Луну и обратно. За это же время обычным стаканом можно 200 раз вычерпать всю воду из Азовского моря. А если каждый день сбрасывать у своего дома хотя бы несколько десятков лопат земли, то через миллиард лет по соседству с вами появится гора, значительно более высокая, чем Эльбрус. Вот что такое миллиард лет.