Космический корабль снова может послужить примером для разъяснения связанных с понятием времени проблем, с которыми столкнулись в эйнштейновской теории относительности. Допустим, космический корабль с большой скоростью удаляется от Земли и движется в космическом пространстве; допустим далее, что удается достаточно долго поддерживать связь между кораблем и Землей. Пусть на корабле имеются часы, сконструированные точно так же, как соответствующие часы на Земле, и откалиброванные по воспроизводимым физическим процессам. Тогда на основании поступающих с космического корабля сообщений наблюдатель на Земле в состоянии контролировать правильность корабельных часов. Он придет к заключению, что они идут чуть медленнее, чем земные часы. Космонавт же, который по сигналам, поступающим с Земли, тоже может сопоставить ход своих часов с ходом часов на Земле, придет к противоположному заключению: для него медленнее идут часы на Земле. Известные нам законы природы не позволяют сомневаться в том, что результат наблюдений был бы именно таков. Как же тогда вообще разумно сравнивать время на Земле и на корабле? Когда следует называть два события «одновременными», если одно из них происходит на Земле, а другое далеко от Земли, на космическом корабле? Если, например, мы отметим на Земле момент получения сигнала с космического корабля, то момент времени на корабле, который следует назвать «одновременным» с этим событием, наступит, во всяком случае, позже момента, когда был послан сигнал. И этот момент по необходимости наступает раньше момента, когда на корабле принимают сигнал с Земли, посланный сразу же по получении первого. Поначалу нельзя решить, где же в этом интервале находится точка одновременности. Я не могу входить здесь в содержательный разбор проблемы переопределения понятия времени, решенной теорией относительности. Для нашей темы достаточно, впрочем, отметить то обстоятельство, что в новой сфере опыта слово «одновременность» поначалу утратило смысл, подобно тому как на космическом корабле утрачивают смысл понятия «наверху» и «внизу», а это значит, что и здесь оказалось невозможным по-прежнему применять важные устоявшиеся в языке понятия.
При таком положении дел на первый взгляд вообще удивительно, что физики продолжают говорить об экспериментах и умеют их теоретически интерпретировать, так как основополагающие понятия их языка, а стало быть, и мышления перестают работать. К счастью, эти трудности оказываются менее серьезными. Возьмем все тот же пример с космическим кораблем. Физику, поддерживающему на Земле связь с кораблем — то же самое можно сказать и о космонавте, — при описании своих экспериментов нет нужды знать, что означает слово «одновременность» применительно к столь удаленной системе. Ведь для каждого из них эксперименты осуществляются в собственном небольшом пространстве, а для описания подобных процессов вполне достаточно обычного языка, точнее языка классической физики. А потому в пределах небольших пространств связь между математическими символами теоретической физики и опытами устанавливается без затруднений, то есть точно так же, как и в прежней физике. И только благодаря этому удается установить, правильно или неправильно описывает математический формализм теории относительности законы природы. Собственно, именно так и могли быть найдены ее законы. Трудности возникают, лишь когда мы пытаемся, опираясь на знание точных законов природы, сформулированных в теории относительности, говорить о пространственно-временных отношениях в целом. Обычного языка здесь уже недостаточно.
С момента открытия теории относительности прошло более полувека, поэтому допустимо поставить вопрос о языке в историческом плане. Каким языком на деле пользовались физики, говоря о пространственно-временных отношениях в целом? Был ли язык экспериментальных описаний непосредственно согласован с искусственным языком математики, который, как мы знаем, верно описывает реальные соотношения, или же они были оторваны друг от друга? И если в большинстве случаев довольствовались приблизительным указанием, то всюду ли, где была необходима точность, приходилось ограничиваться искусственным языком математики?