Как обычно, пролить свет на происходящее нам поможет эксперимент с двумя отверстиями. Световые (или любые другие) волны, которые расходятся в разные стороны от двух отверстий, первоначально исходят из одного источника и потому синхронны между собой. Отверстия просто направляют эти когерентные волны по разным траекториям, и разница в длине этих траекторий влияет на то, как два набора волн взаимодействуют между собой:
Существует еще одна полезная аналогия – так называемая мексиканская волна, которую иногда можно увидеть на стадионах. Если каждый зритель на трибуне поднимает и опускает руки случайным образом, когда ему захочется, вы увидите лишь хаос машущих рук. Но если каждый человек поднимает и опускает руки в нужный момент, следуя за соседями, то по трибунам стадиона проносится волна. Эта волна когерентна, произвольное махание руками некогерентно. Так что термин «декогеренция», строго говоря, не слишком уместен в квантовом контексте. Возможно, было бы разумнее назвать эту модель некогерентной интерпретацией квантовой механики; но тогда ее сторонникам могло бы показаться, что это название создает у читателя ложное впечатление об их любимой идее!
Если фанаты этой идеи правы, граница между квантовостью и обычным миром определяется когерентностью, а не размерами. Бор и его коллеги высказывались об этом весьма туманно, и на то есть причина. Они могли бы вполне разумно утверждать, что такой крупный и сложный объект, как кот, слишком велик, чтобы находиться в квантовой суперпозиции, в то время как отдельные атомы могут находиться в ней. Но если мы начнем придумывать собственные варианты мысленного эксперимента с котом в ящике, то где нужно будет провести границу? Достаточно ли велика блоха, чтобы точно знать, жива она, мертва или находится в состоянии суперпозиции? А микроб? Никто этого не знал.
Один человек принял вызов и решил найти ответ на этот вопрос. Энтони Леггетт, работавший в конце 1960-х и в 1970-е гг. в Университете Сассекса, твердо решил разработать эксперименты, которые позволили бы проверить, приложимы ли по-прежнему правила квантовой механики к описанию поведения так называемых макроскопических объектов – достаточно больших, чтобы их можно было взять в руку (или еще больше). Это привело Леггетта к созданию сверхпроводящих квантовых интерференционных устройств (Superconducting Quantum Interference Device, SQUID). Типичное такое устройство было размером примерно с обручальное кольцо, его действительно можно было брать[15]
, но, поскольку для работы устройство приходилось охлаждать до сверхнизких температур, держать его в руке в работающем состоянии было нельзя. Электрический ток в сверхпроводнике, будучи раз запущенным, течет вечно. Поведение такого тока, протекающего по кольцу SQUID, можно отслеживать, его можно корректировать с помощью электрического и магнитного полей. Эксперименты показали, что электронная волна, бегающая по кольцу, ведет себя как единый квантовый объект, который примерно в сто миллионов раз крупнее атома (и наверняка крупнее бактерии или даже блохи). Таким образом, Леггетт достиг первой поставленной цели, но не остановился на этом.Возможно, вы думаете, что такая волна может бежать по кольцу в одну сторону или в другую, но не в обоих направлениях одновременно. Ошибаетесь. Эксперименты, проведенные в начале XXI в., продемонстрировали эффекты, указывающие на движение волны в обоих направлениях одновременно. Не двух волн, движущихся в противоположных направлениях, а