Читаем Шесть невозможностей. Загадки квантового мира полностью

Как обычно, пролить свет на происходящее нам поможет эксперимент с двумя отверстиями. Световые (или любые другие) волны, которые расходятся в разные стороны от двух отверстий, первоначально исходят из одного источника и потому синхронны между собой. Отверстия просто направляют эти когерентные волны по разным траекториям, и разница в длине этих траекторий влияет на то, как два набора волн взаимодействуют между собой: здесь они сходятся в одной фазе, там – в разных. Гребни и впадины волн всегда располагаются регулярно, по четким правилам, и это позволяет волнам взаимодействовать между собой так, что в результате получается столь же регулярный узор из света и тени. Если волны некогерентны (например, некогерентен свет от двух факелов, освещающих стену), то интерференционной картины нет. Вообще-то, интерференция между ними происходит, но все настолько перемешано, что никакого регулярного узора не возникает. Согласно интерпретации с декогеренцией, «квантовость» исчезает именно тогда, когда все перемешивается. Но ведь свет от двух факелов никогда и не был когерентен. Он был некогерентен.

Существует еще одна полезная аналогия – так называемая мексиканская волна, которую иногда можно увидеть на стадионах. Если каждый зритель на трибуне поднимает и опускает руки случайным образом, когда ему захочется, вы увидите лишь хаос машущих рук. Но если каждый человек поднимает и опускает руки в нужный момент, следуя за соседями, то по трибунам стадиона проносится волна. Эта волна когерентна, произвольное махание руками некогерентно. Так что термин «декогеренция», строго говоря, не слишком уместен в квантовом контексте. Возможно, было бы разумнее назвать эту модель некогерентной интерпретацией квантовой механики; но тогда ее сторонникам могло бы показаться, что это название создает у читателя ложное впечатление об их любимой идее!

Если фанаты этой идеи правы, граница между квантовостью и обычным миром определяется когерентностью, а не размерами. Бор и его коллеги высказывались об этом весьма туманно, и на то есть причина. Они могли бы вполне разумно утверждать, что такой крупный и сложный объект, как кот, слишком велик, чтобы находиться в квантовой суперпозиции, в то время как отдельные атомы могут находиться в ней. Но если мы начнем придумывать собственные варианты мысленного эксперимента с котом в ящике, то где нужно будет провести границу? Достаточно ли велика блоха, чтобы точно знать, жива она, мертва или находится в состоянии суперпозиции? А микроб? Никто этого не знал.

Один человек принял вызов и решил найти ответ на этот вопрос. Энтони Леггетт, работавший в конце 1960-х и в 1970-е гг. в Университете Сассекса, твердо решил разработать эксперименты, которые позволили бы проверить, приложимы ли по-прежнему правила квантовой механики к описанию поведения так называемых макроскопических объектов – достаточно больших, чтобы их можно было взять в руку (или еще больше). Это привело Леггетта к созданию сверхпроводящих квантовых интерференционных устройств (Superconducting Quantum Interference Device, SQUID). Типичное такое устройство было размером примерно с обручальное кольцо, его действительно можно было брать[15], но, поскольку для работы устройство приходилось охлаждать до сверхнизких температур, держать его в руке в работающем состоянии было нельзя. Электрический ток в сверхпроводнике, будучи раз запущенным, течет вечно. Поведение такого тока, протекающего по кольцу SQUID, можно отслеживать, его можно корректировать с помощью электрического и магнитного полей. Эксперименты показали, что электронная волна, бегающая по кольцу, ведет себя как единый квантовый объект, который примерно в сто миллионов раз крупнее атома (и наверняка крупнее бактерии или даже блохи). Таким образом, Леггетт достиг первой поставленной цели, но не остановился на этом.

Возможно, вы думаете, что такая волна может бежать по кольцу в одну сторону или в другую, но не в обоих направлениях одновременно. Ошибаетесь. Эксперименты, проведенные в начале XXI в., продемонстрировали эффекты, указывающие на движение волны в обоих направлениях одновременно. Не двух волн, движущихся в противоположных направлениях, а одной и той же волны, идущей одновременно и так и этак – в суперпозиции. Так что квантовость объекта определяет не его размер, а факт когерентности волн.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература