С тех пор работа в этом направлении значительно продвинулась, что принесло Леггетту Нобелевскую премию и рыцарский титул. Устройства SQUID становятся все крупнее и находят практическое применение в медицине в качестве чувствительных детекторов магнитных полей, генерируемых человеческим телом, а также в качестве потенциальных компонентов квантовых компьютеров. Для нас же важно отметить, что, пока волны когерентны, они ведут себя как макроскопические примеры четко выраженных квантовых состояний, но, когда температура повышается и волны декогерируют, они перестают демонстрировать квантовость. На языке Бора можно сказать, что декогеренция, судя по всему, вызывает схлопывание волновой функции. Поэтому некоторые физики считают, что интерпретация с декогеренцией – это та же копенгагенская интерпретация, но под другим названием. Однако при этом упускается из виду ключевая роль суперпозиции и запутанности в строгой формулировке интерпретации с декогеренцией.
Энтони Леггетт
Tony Evans/Timelapse Library Ltd./Getty Images
Суперпозиция и запутанность – две стороны одной монеты. Когда две «частицы» взаимодействуют, они становятся запутанными, и с этого момента все, что происходит с одной из них, влияет на другую. По существу, они становятся единым объектом. Точно так же волну, бегающую по кольцу SQUID одновременно в обоих направлениях, можно считать двумя волнами в суперпозиции, запутанными между собой. Результат этого – единый квантовый объект, волна, бегущая по кольцу не в одном направлении, а в двух сразу. Неудивительно, что интерпретация с декогеренцией появилась только в 1980-х гг., одновременно с экспериментами, установившими, что запутанность – верное описание способа функционирования нашего мира.
Что же на самом деле происходит, когда «чистый» квантовый объект взаимодействует с внешним миром и «декогерирует»? Он становится не
Как отметил Филип Болл, декогеренция очень быстро приводит к некогерентному состоянию, эквивалентному суперпозиции такого числа квантовых состояний, которое превышает число элементарных частиц в наблюдаемой Вселенной. Болл задал вопрос: «Можно ли объявить задачу строго нерешаемой только потому, что во Вселенной недостаточно информации для ее решения?»[16]
Также Болл привел некоторые оценки времени, необходимого системе для декогеренции. У крупных объектов декогеренция проходит быстрее, потому что в них больше кусочков, способных взаимодействовать с другими объектами и друг с другом. У пылинки, плавающей в воздухе и бомбардируемой окружающими молекулами, декогеренция занимает меньше времени, чем нужно фотону, движущемуся со скоростью света, чтобы пройти расстояние, эквивалентное диаметру протона. Даже в межзвездном пространстве пылинка, плавающая свободно и взаимодействующая только с фотонами реликтового излучения, декогерирует примерно за секунду. «Для всех практических целей декогеренция мгновенна и неизбежна». Это относится и к знаменитому коту Шрёдингера. Чтобы быть «одновременно мертвым и живым», этот кот должен быть «подготовлен» в некоем почти невероятном когерентном состоянии чистой квантовости. Одно дело – подготовить в чистом квантовом состоянии SQUID, и совсем другое – проделать это с котом. А если вам это удастся, то квантовый кот декогерирует либо в мертвого, либо в живого кота быстрее, чем декогерирует плавающая в воздухе пылинка.