Читаем Шесть невозможностей. Загадки квантового мира полностью

Итальянский эксперимент был настолько точным, что электроны можно было выпускать один за другим, словно самолеты на вылете из загруженного аэропорта. И, как вылетающие самолеты, электроны летели друг за другом с существенным интервалом. Расстояние от источника электронов (он был устроен чуть более хитроумно, чем простая нить накаливания) до экрана детектора составляло 10 м, и очередной электрон покидал источник только после того, как его предшественник достигал пункта назначения. Вы, надеюсь, уже догадались, что происходило, когда тысячи электронов выстреливались один за другим, чтобы образовать рисунок на экране. На нем появлялась интерференционная картина! И если предположить, что отдельные частицы, чтобы сформировать эту картину, действовали совместно, как взаимодействующие молекулы воды в пруду, тогда взаимодействие между ними должно происходить не только через пространство, но и через время. Такой эксперимент стал известен как «двухщелевая дифракция одиночного электрона».

Если электроны запускать по одному, как в двухщелевом эксперименте со светом, каждый из них оставит на детекторном экране пятнышко света. Со временем пятнышки накапливаются и образуют интерференционную картину, как если бы электроны представляли собой волны (см. след. рис.).

Итальянская команда опубликовала свои поразительные результаты в 1976 г., но это не «подняло волну» в мире науки. В то время мало кого из исследователей волновало, как работает квантовая механика, – главное, чтобы она работала, то есть чтобы уравнения можно было использовать для расчетов и корректного предсказания результатов экспериментов. А уж как именно электрон или пучок электронов попадает из точки A в точку B, для инженера, конструирующего, скажем, телевизор, значения не имеет. Можно провести аналогию с той исчезающей породой автогонщиков, которых нисколько не волнует, что происходит под капотом их машин, – они просто проносятся по трассе, круг за кругом, на высокой скорости. Единственным советом, который – не без иронии – давали преподаватели студентам, желавшим все же разобраться в том, почему уравнения квантовой механики работают, был уже упомянутый мной совет «заткнуться и считать», то есть пользоваться уравнениями и не думать о том, что это все означает.


American Journal of Physics (1989)


В 1980-х такая позиция стала вызывать все больше вопросов, не в последнюю очередь из-за новых открытий, которые я опишу в главе «Шаг второй». Когда группа японских ученых под руководством Акиры Тономуры провела серию аналогичных экспериментов с использованием новых технических возможностей, их результаты, опубликованные в 1989 г., наделали куда больше шума. В 2002 г. читатели журнала Physics World назвали эксперимент по двухщелевой дифракции электрона «самым красивым физическим экспериментом».

Оставалась одна деталь, которая не устраивала ученых. В экспериментах с электронной бипризмой никакого физического барьера, подобного первому экрану в классическом двухщелевом эксперименте со светом, не существовало. Оба пути через установку, оба «канала» всегда были открыты. И в 2008 г. Поцци уже с другой группой коллег сделал следующий шаг. Ученые провели эксперимент, в котором электроны выстреливали по одному через две реальные наноразмерные физические щели в тонком экране и регистрировали с другой его стороны обычным способом. Как и ожидалось, электроны, попадающие в детектор, образовывали интерференционную картину. Когда же итальянская команда перекрыла одну щель и провела эксперимент еще раз, никакой интерференционной картины не было. Вместо нее на экране детектора образовалось простое световое пятно, расположенное непосредственно за щелью, – точно такое, какого можно было бы ожидать от потока частиц. Но откуда отдельный электрон, в одиночку проходящий через отверстие в стене, может «знать», есть ли поблизости еще одно отверстие, через которое он, в принципе, мог бы пройти, и открыто оно или закрыто, чтобы соответствующим образом поменять свою траекторию?

Следующий шаг был очевиден теоретически, но невероятно сложно реализуем на практике. Предстояло построить установку с двумя отверстиями в наномасштабе, которые можно открывать или закрывать, пока электрон еще летит. Можно ли обмануть электроны, изменив конфигурацию установки после того, как они пустились в путь? Эту сложную задачу взяла на себя группа ученых из США под руководством голландца по рождению Хермана Бателаана. Полученные результаты исследователи опубликовали в 2013 г. Я описал их эксперимент в очерке «Квантовая загадка», изданном для Kindle. Поскольку в нем приведены точные числа, я не могу улучшить это описание и приведу его здесь целиком.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература