Читаем Шесть невозможностей. Загадки квантового мира полностью

В самом деле, «пыряние» могло бы оказаться лучшим термином, чем тот, что обычно используется для обозначения одного фундаментального квантового свойства электронов и других частиц – как правило, его именуют «спином», или, попросту говоря, вращением. Конечно, спин – это уютное привычное понятие, такое же, как волна или частица, – и ровно настолько же обманчивое. С одной стороны, уравнения говорят нам, что любой квантовый объект должен провернуться дважды, чтобы вернуться в первоначальное положение, что бы это ни значило в физическом смысле (я определенно не в состоянии представить себе это событие). Но спин – полезное свойство при обсуждении многих квантовых явлений, поскольку он может принимать два значения; их можно представить направленными «вверх» и «вниз» и обозначить как положительный и отрицательный спин. Это упрощает рассмотрение многих вопросов, которое в противном случае могло бы чудовищно усложниться.

Возьмем, например, вероятность. В контекст квантовой механики идею вероятности на прочном математическом основании ввел немецкий физик Макс Борн. Не углубляясь в математику, мы можем оценить важность этой идеи на примере спина электрона (или пыряния шорьков, как, возможно, предпочел бы сказать Эддингтон). С помощью уравнений квантовой механики можно описать мысленный эксперимент, в котором атом испускает электрон, улетающий в пространство (в реальности это процесс, называемый бета-распадом). Электрон обладает спином – положительным либо отрицательным. Определить это заранее нельзя, шансы равны – 50/50. Проведя эксперимент тысячу раз (или одновременно с тысячей атомов), мы насчитаем 500 электронов (возможно, чуть больше или чуть меньше) с положительным спином и 500 – с отрицательным. Можно поймать единичный электрон и измерить его спин, до этого момента сказать, каким этот спин окажется, невозможно.

Пока ничего удивительного. Но Эйнштейн понял, что уравнения квантовой теории предсказывают нечто удивительное, когда речь идет о двух электронах, разлетающихся в противоположных направлениях[4]. В определенных обстоятельствах здесь применим закон сохранения, согласно которому эти электроны должны обладать противоположными спинами (один положительным, другой – отрицательным, в результате они друг друга компенсируют). Однако уравнения показывают: когда электроны вылетают из атома, у них нет определенного спина. Они находятся в так называемой суперпозиции – смеси состояний «положительный спин» и «отрицательный спин». Электрон «решает», какое состояние принять, лишь когда взаимодействует с чем-то еще. Эйнштейн указал на следующее: если два электрона должны все время иметь противоположные спины, то в момент, когда первый электрон «решает», что его спин будет иметь положительное значение, второй электрон обязан обзавестись отрицательным спином, как бы далеко друг от друга они ни находились. Эйнштейн назвал это «жутким дальнодействием», поскольку на первый взгляд создавалось впечатление, будто электроны должны поддерживать между собой связь со сверхсветовой скоростью, что исключает специальная теория относительности.

Идею Эйнштейна сумели развить и изложить в форме статьи Борис Подольский и Натан Розен, она вышла в 1933 г. (некоторые, правда, считают, что соавторы скорее помешали, чем помогли Эйнштейну, поскольку статья написана плохо, с нечеткими формулировками). По инициалам авторов она известна как статья ЭПР, а ее центральная идея – как парадокс ЭПР, хотя это вовсе не парадокс, а всего лишь вопрос, ставящий в тупик. В 1935 г., представляя другой знаменитый парадокс, Шрёдингер назвал способ, посредством которого две квантовые системы оказываются соединены жутким дальнодействием, «запутанностью». В статье ЭПР констатировалось, что квантовая теория ставит реальность [свойств второй системы] «в зависимость от процесса измерения, производимого над первой системой, хотя этот процесс никоим образом не влияет на вторую систему. Никакое разумное определение реальности не должно, казалось бы, допускать этого»[5]. Авторы пришли к выводу: «Мы вынуждены заключить, что квантово-механическое описание физической реальности… не является полным»[6]. Эйнштейн считал, что должен существовать некий фундаментальный механизм, известный как скрытые переменные, благодаря ему электроны, разлетаясь в разные стороны от источника, лишены возможности выбирать значение спина – положительное или отрицательное. Все уже предопределено.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература