Читаем Шипение снарядов полностью

Равенство значений магнитного потока в контуре, «свернутом» в пару витков и в том же, но «развернутом» контуре. В первом случае магнитный поток равен тройному произведению: индукции магнитного поля на площадь витка и на число витков; во втором — той же индукции на общую площадь контура (равную удвоенной площади одного витка)

Несмотря на «заботу» потока о самосохранении, полностью ему удается достичь этого лишь в контуре из сверхпроводника. В обычные же металлы магнитное поле частично или полностью проникает. «Увязшее» в проводнике поле лишается подвижности и не участвует в процессах преобразования энергии, а только нагревает проводник. Глубину проникновения называют скин-слоем, и зависит она, помимо проводимости, от частоты тока или от длительности импульса переменного во времени поля. Распределение индукции поля по толщине скин-слоя неравномерно (описывается уравнением диффузии).

Из рис. 4.8 ясно, что при прочих равных условиях потери такого рода тем выше, чем на большей длине провода (или числе витков) происходит диффузия поля. Так что если задумано для усиления тока и магнитной энергии сжать контур, то делать это надо быстро, чтобы существенная часть потока в нем сохранилась свободной: чем она больше, тем выше «качество» процесса сжатия.

Правда, не всегда из сохранения потока надо «делать культ»: величина тока неразрывно связана с индукцией магнитного поля, создаваемого этим током, а эта связь влечет за собой и другую — магнитного потока с магнитным моментом. Модуль последней величины равен произведению площади, охватываемой контуром, на ток в нем (М = IS). Второй производной магнитного момента по времени пропорциональна мощность электромагнитного излучения и связь магнитного потока и магнитного момента приводит к тому, что для контура, в котором магнитный поток изменяется несущественно (магнитное поле квазистационарно), незначительно меняется и магнитный момент, а значит — излучение пренебрежимо, даже если магнитная энергия в контуре очень велика. Один из способов получить излучение — «выпустить» [78] магнитный поток, что не всегда проходит безнаказанно: так, юный Адя Сахаров, без всяких мыслей об излучении, отключил руками батарейку от игрушечного электромотора. Напряжение батарейки мало, но, из-за большого числа витков обмотки, магнитный поток (произведение тока на индуктивность) был заметным и он индуцировал в контуре ЭДС, направленную так, чтобы изгнанию потока воспрепятствовать. Эта ЭДС, равная отношению величины подвергнутого остракизму [79] потока ко времени, за которое произошел разрыв, и «дернула» естествоиспытателя.

Ну а позже Сахаров и американец Макс Фаулер прославились изобретением устройств для преобразования энергии взрыва в электромагнитную — таких, в которых магнитный поток сжимается, а не выпускается.

Сам Андрей Дмитриевич отмечал, что мысли о возможности магнитной кумуляции (МК) еще раньше высказывались Я. Терлецким и В. Аркадьевым, но: «осуществление культуры МК стало возможным лишь тогда, когда возникла определенная культура обращения со сложными зарядами ВВ — кумулятивными, которые появились только во время Второй мировой войны, взрывными линзами (тогда же), с имплозивными зарядами. По существу, именно объект (имеется в виду центр разработки ядерного оружия — ВНИИ экспериментальной физики в г. Саров, ранее известный, как Арзамас-16) и ему подобные учреждения были наиболее подходящими для этих работ. В делах такого рода осуществление идеи — это даже не полдела, а все 99 %».

Следует добавить, что чрезвычайно важно представлять и порядки величин, существенных для реализации идеи. У Сахарова было и это преимущество, потому что в годы войны он был одним из создателей прибора для контроля бронебойных сердечников на патронном заводе. В основу работы этого прибора был положен скин-эффект.

Фаулер — в США и Сахаров — в СССР предложили сжать взрывом металлическую трубку (лайнер), в которой заранее создавалось магнитное поле (рис. 4.9). Чтобы «впустить» внешнее поле, лайнер вначале делали разрезным (взрыв «захлопывал разрез»), но последующее сжатие происходило неравномерно, поэтому позже стали навивать катушку из множества изолированных проводков (рис. 4.10), изоляция которых передавливалась при взрыве.

Рис. 4.9

Предложенный А. Сахаровым и М. Фаулером метод сжатия магнитного поля лайнером под действием давления взрыва

Перейти на страницу:

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли

Справочник содержит сведения о корабельном составе Р'РњР¤ СССР по состоянию на декабрь 1991 г. Однако в нем прослежена СЃСѓРґСЊР±Р° кораблей советского флота до 2001 г. Приведены данные по находившимся в строю, строившимся и проектировавшимся боевым кораблям, РёС… названиям, заводским номерам, датам закладки, СЃРїСѓСЃРєР°, вступления в строй, вывода из боевого состава флота, модернизаций или переоборудования, предприятиям (заводам, фирмам)-строителям и фирмам-проектантам. Рассказано об особенностях проектов, проектировании, строительстве, ремонтах и модернизациях, наиболее характерных авариях и важных этапах активной службы. Представлены схемы внешнего вида, продольные разрезы всех проектов и РёС… модификаций, многочисленные фотографии. Справочник издается в четырех томах: С'. I. Подводные лодки (в РґРІСѓС… томах); С'. Р

Юрий Валентинович Апальков

Технические науки / Образование и наука