Читаем Шипение снарядов полностью

Но даже если подавить нестабильности, лайнер все равно будет остановлен магнитным давлением: оно возрастает быстрее, чем гидродинамическое давление в его веществе. Площадь области, охватываемой лайнером, убывает обратно пропорционально квадрату радиуса, а значит, в той же пропорции возрастает индукция поля; для магнитного же давления эта зависимость еще сильнее — оно пропорционально квадрату индукции, то есть — обратно четвертой степени радиуса! Закон возрастания давления гидродинамических сил куда слабее — оно всего лишь обратно пропорционально логарифму радиуса. Из этого следует, что магнитное поле, пусть даже очень слабое вначале, неизбежно станет «сильнее» взрыва и остановит движение лайнера к оси. Между прочим, чем слабее начальное поле, тем выше может быть магнитная энергия в точке остановки: ведь слабое поле дольше усиливается, а значит, будет остановлено ближе к оси, где гидродинамическое давление выше. В проведенных во ВНИИЭФ опытах давление магнитного поля индукцией в 1000 Тл достигало четырех миллионов атмосфер, что превышало прочностные пределы любых материалов.

Рекордные значения магнитной энергии в лайнерном ИВМГ получают только при очень большом токе запитки, потому что усиление, определяемое отношением начального и конечного радиусов сжатия, в генераторе этого типа невелико.

Взрывомагнитные генераторы всех типов создавались для применения в ядерном оружии, в частности — для энергообеспечения систем нейтронного инициирования, но предпринимались и попытки расширения области их использования.

…В то, что импульсное магнитное поле способно хорошо «нажать» на металлическое тело, читателю до сих пор приходилось «только верить», но желающие могут убедиться в этом. Установка, которую им предстоит собрать, проста (рис. 4.12).

Рис. 4.12

Схема домашней пушки Гаусса и ее элементы:

1– диод;

2 — резистор;

3 — конденсатор;

4 — катушка с расположенным на ее оси стволом из диэлектрика;

5 — центратор с насаженным кольцом и стальные кольца-снаряды на постоянном магните (см. также врезку слева);

6 — штанга для закорачивания контура.

Выдающийся германский физик и математик К. Гаусс (1777–1885) теоретически обосновал возможность достижения неограниченных скоростей метания проводящих тел магнитным полем (именно — теоретически, потому что на практике эти скорости всегда чем-нибудь да ограничиваются). Он показал, что в энергию метаемого тела может быть преобразовано около 7 % энергии тока, протекающего в катушке (что примерно впятеро ниже КПД выстрела заряженного порохом орудия крупного калибра). Но заставить вырвавшиеся из ствола пороховые газы дополнительно ускорить снаряд нельзя, а вот запитать «отработанным» токовым импульсом другую катушку — можно, поэтому идея Гаусса заключалась в разгоне тела при прохождении им последовательности катушек. Максимальная энергия передается метаемому телу, если ток заканчивается в момент достижения телом середины обмотки, но обеспечить синхронную запитку нескольких катушек в домашних условиях сложно: потребуется много конденсаторов, тиристоров для коммутации, линий задержки, а главное — осциллограф, без которого экспериментатор слеп. Так что воспроизведена всего лишь секция пушки Гаусса, как и в «Хохдрукспумпе» — одна из многих.

Главный элемент — катушка. Ее наматывают эмалированным проводом (ПЭВ, ПЭВТЛ) диаметром 0,5–0,8 мм. Каркасом служит обрезок трубки из диэлектрика (подойдет та, что прилагается к пакету с соком или корпус шариковой ручки, главное — чтобы стенки были потоньше) и два диска-ограничителя из любого диэлектрика. Всего надо намотать примерно 500 витков, стараясь, чтобы обмотка была плотной (ее можно уместить в 12–15 слоев).

Другой важный элемент — конденсатор. Как и при намотке катушки, здесь возможна импровизация, но ориентир указать стоит: у автора под рукой оказался японский, полярный, емкостью 4700 мкФ. Допустимое напряжение зарядки должно быть не менее 400В.

Заряжать конденсатор можно и от сети — через диод. Не забудьте для ограничения тока включить последовательно резистор сопротивлением не менее килоОма, иначе «накроются» и диод и конденсатор. 220 В — эффективное напряжение, а пиковое значение его в сети выше. До пикового значения в конечном итоге зарядится конденсатор, и этого должно хватить для удачного опыта, но всегда может потребоваться резерв, поэтому разумно предусмотреть зарядку по схеме удвоения напряжения.

Перейти на страницу:

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли

Справочник содержит сведения о корабельном составе Р'РњР¤ СССР по состоянию на декабрь 1991 г. Однако в нем прослежена СЃСѓРґСЊР±Р° кораблей советского флота до 2001 г. Приведены данные по находившимся в строю, строившимся и проектировавшимся боевым кораблям, РёС… названиям, заводским номерам, датам закладки, СЃРїСѓСЃРєР°, вступления в строй, вывода из боевого состава флота, модернизаций или переоборудования, предприятиям (заводам, фирмам)-строителям и фирмам-проектантам. Рассказано об особенностях проектов, проектировании, строительстве, ремонтах и модернизациях, наиболее характерных авариях и важных этапах активной службы. Представлены схемы внешнего вида, продольные разрезы всех проектов и РёС… модификаций, многочисленные фотографии. Справочник издается в четырех томах: С'. I. Подводные лодки (в РґРІСѓС… томах); С'. Р

Юрий Валентинович Апальков

Технические науки / Образование и наука