Читаем Шипение снарядов полностью

Энергию накопителя коммутируйте на катушку проводом, укрепленным на пластмассовой штанге. При перерывах в работе штангу оставьте в положении, закорачивающем конденсатор (как на фотографии), иначе вас, вернувшегося полным идей за лабораторный стол, может для начала «дернуть» остаточным напряжением. О метаемом теле. Подойдет и обрезок гвоздя, но большую энергию поле отдаст кольцу, поскольку на единицу массы дипольный момент кольца выше. Хорошо «летят» шайбы стального крепежа. Кольцо вставьте внутрь трубки на центраторе — подходящем по диаметру стержне из любого диэлектрика, заостренном на карандашной точилке. Не надо усердствовать, насаживая кольцо, иначе оно может вообще не полететь или «захватить» центратор с собой.

Ну вот и все. Напряжение зарядки будет возрастать достаточно медленно, и контролируя его тестером, вы сможете выбрать значение, при котором решили стрелять. Яркая вспышка, хлопок разряда, за которыми последуют частые щелчки укатившегося безвозвратно кольца, будут вашими первыми впечатлениями. Немного терпения — и вам удастся добиться того, на что не была способна установка «водяной» кумуляции: пробить метаемым телом алюминиевую фольгу…

…Профессор В. Соловьев с кафедры боеприпасов МГТУ попросил о помощи в реализации новой идеи. В то время правительство СССР было обеспокоено угрозой, исходящей от американских крылатых ракет, разворачиваемых в Западной Европе (рис. 4.13). Лететь они могли на небольшой высоте, «копируя» рельеф местности, так что обнаружить их было непросто. Но проблемы возникали и с уничтожением обнаруженной ракеты: если поражающие элементы пробивали ее корпус, чувствительные датчики формировали сигнал подрыва ядерного заряда, с которого при полете над территорией противника снимались все ступени предохранения. Взрыв с энерговыделением в сотни килотонн не оставлял шансов выжить тому пилоту или расчету, который попал бы в такую цель. Откуда-то возникла оценка (в ее правильности автор испытывал сильные сомнения), согласно которой поражающий элемент должен иметь скорость пять, а лучше — семь километров в секунду: тогда он пробьет корпус ракеты и вызовет детонацию взрывчатого вещества ядерного заряда в одной точке. Взрыв произойдет, но сборка с плутонием не будет обжата со всех сторон (автоматика ядерного заряда просто не успеет сработать за время, пока произойдут эти события). Вместо шара сборка в этом случае превратится в нечто, напоминающее хлебный каравай и цепная реакция из-за потерь нейтронов разовьется не полностью [80].

Однако поражающий элемент должен быть компактным телом, а не тонкой кумулятивной струей, потому что вероятность того, что струя инициирует детонацию малочувствительного ВВ, которым снаряжен заряд, невелика.

Скорости метания компактных тел, превышающие 5 км/с, получают с помощью легкогазовых пушек и рельсотронов.




Рис. 4.13

Верхние снимки: дальность полета крылатой ракеты AGM-86A, (свыше 1500 км) позволяла ударной авиации применять ее вне зоны воздействия средств ПВО. Крылатая ракета BGM-109 морского базирования (на снимке — ее старт с подводной лодки) могла лететь более чем на 500 км дальше. Как AGM-86A, так и BGM-109 комплектовались зарядом W-80 Mod 1. Даже если бы проблема формирования высокоскоростного поражающего элемента и была бы решена, за ней встала бы другая, не менее сложная: чтобы избежать ядерного взрыва, надо было попасть не в любой важный узел ракеты, и даже не просто в термоядерный заряд, а — в запал этого заряда. На вооружении бомбардировщиков В-52 состояли также ракеты AGM-69A SRAM (Short Range Attack Missile, снимок в центре) — существенно меньшей дальности, но более скоростные. Эти ракеты комплектовались зарядами W-69 (ниже) с энерговыделением 170–200 кт

Рис. 4.14

Хранилище ядерных авиабомб В-61

Перейти на страницу:

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли

Справочник содержит сведения о корабельном составе Р'РњР¤ СССР по состоянию на декабрь 1991 г. Однако в нем прослежена СЃСѓРґСЊР±Р° кораблей советского флота до 2001 г. Приведены данные по находившимся в строю, строившимся и проектировавшимся боевым кораблям, РёС… названиям, заводским номерам, датам закладки, СЃРїСѓСЃРєР°, вступления в строй, вывода из боевого состава флота, модернизаций или переоборудования, предприятиям (заводам, фирмам)-строителям и фирмам-проектантам. Рассказано об особенностях проектов, проектировании, строительстве, ремонтах и модернизациях, наиболее характерных авариях и важных этапах активной службы. Представлены схемы внешнего вида, продольные разрезы всех проектов и РёС… модификаций, многочисленные фотографии. Справочник издается в четырех томах: С'. I. Подводные лодки (в РґРІСѓС… томах); С'. Р

Юрий Валентинович Апальков

Технические науки / Образование и наука