Читаем Шипение снарядов полностью

Вследствие утраты диодами своих функций, подвергаются воздействию и другие элементы. Воздействие возможно также через паразитные связи, наводки на соседних кабелях, путем ударного возбуждения колебаний на различных резонансных частотах. Подобный сигнал преобразуется в «видеоимпульс» нелинейными устройствами, такими как биполярные транзисторы, и, благодаря своей аномальной мощности, вызывает срыв передачи данных, сброс информации, а в некоторых случаях — приводящие к повреждениям наиболее чувствительных элементов перегрузки.

Ясно, что данное описание может объяснить наблюдавшиеся эффекты лишь на качественном уровне и далеко не все. Так, например, указанными выше причинами нельзя объяснить зарегистрированное однажды восстановление работоспособности электроники спустя несколько суток после воздействия РЧЭМИ.

Остро необходимыми стали не только научно-технические решения, но и дидактическая деятельность — разъяснение особенностей нового оружия и рациональных приемов его боевого применения.

…Одна из основ электродинамики — теорема взаимности: любое устройство принимает волны данной частоты с данного направления тем эффективнее, чем эффективнее оно излучает на той же частоте, в том же направлении (а излучает любая электроника, даже и не предназначенная дня этого). Так, например, радар принимает/излучает остронаправленно только на «своей» частоте (правда, всегда существуют и боковые лепестки). Чем больше частоты воздействующего излучения отличаются от рабочей, тем более вырождается диаграмма (рис. 4.55): число максимумов растет, а их отличия от минимумов уменьшаются.

Простота «вырожденной» диаграммы обманчива, потому что иллюстрирует интегральную эффективность приема. Но в сложном электронном устройстве функционирует множество контуров и у каждого из них — своя резонансная частота, зачастую существенно отличающаяся от рабочей частоты устройства. Даже при незаметных поворотах цели и источника сверхширокополосного излучения взаимодействие их частных диаграмм направленности приводит к калейдоскопу эффектов, где каждая последующая «картинка» не похожа на предшествующую.

Рис. 4.55

Диаграмма излучения/приема, типичная для радиолокатора: а) остронаправленная, для рабочей частоты; б) для частот, на порядок отличающихся от рабочей

Казалось бы, самый выгодный вариант — поражение цели излучением ее рабочей частоты, которое преобразуется в приемных трактах очень эффективно. Громогласные авансы дальностей поражения в километры это подразумевают, хотя обычно стараются обойти молчанием факт, что многие цели оснащены не имеющими отношения к радиолокации головками самонаведения (телевизионными, инфракрасными и прочими). Что же касается целей с радиолокационными головками самонаведения, то уровни их поражения излучением их же рабочей частоты минимальны, это правда, но такая, что «хуже всякой лжи». Для этого надо очень точно совместить пучок РЧЭМИ и крайне узкий «главный лепесток» антенны головки, иначе дальность поражения упадет даже не в разы, а на порядки. Борьба с управляемыми ракетами на их собственных рабочих частотах потребует воспитания военнослужащих в духе кодекса Бусидо [92]: ослепить в этой ситуации можно лишь ракету, «смотрящую прямо в глаза», остальные придется пропустить, потому что облучать их «со стороны» бесполезно: нельзя попасть в главный лепесток. Но даже и ослепленную в нескольких километрах от позиции ракету следует «ждать в гости» спустя секунды; промах ее по ранее захваченной цели будет небольшим, а боевая часть и ударный взрыватель — исправны.

Можно, конечно, восславить «безумство храбрых», но, скорее всего, каждый из восславленных предпочел бы стрелять ЭМБП. Во-первых, сделать это можно «из-за угла», наплевав ради безопасности на рыцарские манеры; во-вторых — дальность стрельбы определяется не рассеянием РЧЭМИ, а возможностями носителя ЭМБП, соответственно и цель может быть выведена из строя на большей дистанции, а значит — менее вероятно попадание уже неуправляемой ракеты в обороняемый объект.

Электроника играет главную роль не только в наведении ракет, но и во многих других процессах боя, и научиться предсказывать ее «поведение» — весьма важно. Пока не известны модели, надежно описывающие реакцию сколько-нибудь сложного электронного устройства на облучение сверхширокополосным РЧЭМИ, а она может быть различной: наложение эффектов в нескольких контурах, самопроизвольное восстановление некоторых схем спустя иногда миллисекунды, а иногда — часы и даже дни.

Для наработки данных о таких эффектах требовалось столько ЭМБП, что опытному производству выпуск их был не по силам. По-спорьем стал источник РЧЭМИ со сверхпроводниковым коммутатором — опять же результат попытки помочь друзьям.

Перейти на страницу:

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли

Справочник содержит сведения о корабельном составе Р'РњР¤ СССР по состоянию на декабрь 1991 г. Однако в нем прослежена СЃСѓРґСЊР±Р° кораблей советского флота до 2001 г. Приведены данные по находившимся в строю, строившимся и проектировавшимся боевым кораблям, РёС… названиям, заводским номерам, датам закладки, СЃРїСѓСЃРєР°, вступления в строй, вывода из боевого состава флота, модернизаций или переоборудования, предприятиям (заводам, фирмам)-строителям и фирмам-проектантам. Рассказано об особенностях проектов, проектировании, строительстве, ремонтах и модернизациях, наиболее характерных авариях и важных этапах активной службы. Представлены схемы внешнего вида, продольные разрезы всех проектов и РёС… модификаций, многочисленные фотографии. Справочник издается в четырех томах: С'. I. Подводные лодки (в РґРІСѓС… томах); С'. Р

Юрий Валентинович Апальков

Технические науки / Образование и наука