Читаем Шум. Несовершенство человеческих суждений полностью

Сегодня, спустя много лет после прорыва Доуза, так удивлявший его современников статистический феномен хорошо изучен. Как мы уже объяснили ранее в этой книге, множественная регрессия вычисляет «оптимальные» весовые коэффициенты, которые минимизируют квадратичные ошибки. Однако при этом ошибки минимизируются в исходных выборочных данных. Таким образом формула корректирует сама себя, чтобы предугадать всякую случайную флуктуацию в данных. Например, если какие-то из менеджеров в выборке обладают хорошо развитыми техническими навыками, то в случае высоких показателей по другим, не связанным с ними показателям модель преувеличит вес технических навыков.

Проблема в том, что, когда формула применяется вне выборки – то есть для других наборов данных, – присвоенные таким образом веса уже не будут оптимальны. Флуктуации, имевшие место в первоначальной выборке, больше не присутствуют – на то они и случайности; не все менеджеры с хорошо развитыми техническими навыками являются суперзвездами. А в новой выборке уже другие флуктуации, которые формула не может учесть. Истинная мера точности модели – ее приспособляемость к новой выборке, иначе говоря, способность к корреляции с перекрестной проверкой. Действительно, регрессивная модель слишком успешно работает в оригинальной выборке, в то время как при наличии перекрестной проверки корреляция почти всегда ниже, чем она была в исходных данных. Доуз и Корриган сравнивали равновесные модели с моделями на основе множественной регрессии (с перекрестной проверкой) в различных ситуациях. Рассматривался типичный случай: прогнозирование среднего балла в первый год обучения для 90 студентов факультета психологии в Иллинойском университете; использовались десять переменных, имеющих отношение к успеваемости: результаты тестов на выявление способностей, отметки в колледже, различные субъективные оценки ровесников (например, степень экстраверсии), а также самооценка (например, добросовестности). Стандартная модель на основе множественной регрессии показала корреляцию 0,69, а наличие перекрестной проверки ухудшило результат до 0,57 (ПС=69 %). Корреляция равновесной модели со средним баллом осталась примерно такой же: 0,60 (ПС=70 %). Похожие результаты116 были получены и во многих других исследованиях.

Модели с перекрестной проверкой показывают наихудший результат, когда оригинальная выборка слишком мала, поскольку флуктуации в маленьких выборках принимают угрожающие размеры. Доуз обнаружил проблему: используемые в социологических исследованиях выборки обычно настолько малы, что теряется все преимущество так называемого оптимального взвешивания. Недаром статистик Говард Уэйнер снабдил научную статью, посвященную расчету правильных весов, подзаголовком «Нам без разницы»116а. Или, как говорил Доуз, «нам не нужны117 модели настолько точные, что мы эту точность не можем измерить». Равновесные модели работают хорошо, потому что они нечувствительны к специфике конкретной выборки.

Непосредственные выводы из работ Доуза получили заслуженное признание: вы можете давать эффективные статистические прогнозы, ничего не зная наперед об аналогичных предшествующих результатах. Все, что вам нужно, – это набор прогностических факторов, относительно которых вы можете быть уверены, что они коррелируют с конечным результатом.

Предположим, вам нужно спрогнозировать эффективность работы менеджеров, которым присвоены рейтинги по некоторому количеству параметров, как в примере из главы 9. Вы уверены, что набранные баллы оценивают определенные компетенции кандидатов, однако не имеете данных о том, насколько хорошо они прогнозируют будущий успех. Вы также не можете позволить себе роскошь ждать несколько лет, чтобы отследить успехи большой выборки менеджеров. Однако вы можете взять баллы по семи параметрам, проделать необходимую статистическую работу, чтобы присвоить им равные веса, и использовать результат в качестве прогноза. Насколько хороша эта равновесная модель? Ее корреляция с конечным результатом118 составляет 0,25 (ПС=58 %), что намного превосходит клинические оценки (r=0,15, ПС=55 %) и уверенно приближается к регрессивной модели с перекрестной проверкой. При этом вам не требуется никаких дополнительных данных, которых у вас нет, и никаких сложных вычислений.

Действительно, в равных весах есть «грубая красота»119 – недаром высказывание Доуза стало мемом среди студентов. Заключительная фраза знаменитой статьи, которая ввела в обиход идею, содержала очередное лаконичное резюме: «Вся хитрость в том120, чтобы выбрать нужные переменные и правильно их сложить».

Еще больше простоты: простые правила

Еще один способ упрощения – использование экономных моделей, или простых правил. Экономные модели в реальности выглядят как упрощенные до смешного расчеты на клочке бумаги. Однако в некоторых случаях они могут выдавать поразительно точные результаты.

Перейти на страницу:

Похожие книги

Психология художественного творчества
Психология художественного творчества

Настоящая хрестоматия посвящена одному из важнейших аспектов душевной жизни человека. Как зарождается образ в глубинах человеческой психики? Каковы психологические законы восприятия прекрасного? В чем причина эстетической жажды, от рождения присущей каждому из нас? Психология художественного творчества – это и феномен вдохновения, и тайна авторства, и загадка художественного восприятия, искусства не менее глубокого и возвышенного, чем умение создавать шедевры.Из века в век подтверждается абсолютная истина – законы жизни неизменно соответствуют канонам красоты. Художественное творчество является сутью, фундаментом и вершиной творчества как такового. Изучая этот чрезвычайно интересный и увлекательный предмет, можно понять самые сокровенные тайны бытия. Именно такими прозрениями славятся великие деятели искусства.

Константин Владимирович Сельченок

Психология и психотерапия / Психология / Образование и наука
Общаться с ребенком. Как?
Общаться с ребенком. Как?

Издание 6-е.Малыш, который получает полноценное питание и хороший медицинский уход, но лишен полноценного общения со взрослым, плохо развивается не только психически, но и физически: он не растет, худеет, теряет интерес к жизни. «Проблемные», «трудные», «непослушные» и «невозможные» дети, так же как дети «с комплексами», «забитые» или «несчастные» – всегда результат неправильно сложившихся отношений в семье. Книга Юлии Борисовны Гиппенрейтер нацелена на гармонизацию взаимоотношений в семье, ведь стиль общения родителей сказывается на будущем их ребенка!

Сергей Инев , Юлия Борисовна Гиппенрейтер

Публицистика / Домоводство / Педагогика, воспитание детей, литература для родителей / Психология и психотерапия / Психология / Прочее домоводство / Дом и досуг / Образование и наука / Документальное