Читаем Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет полностью

Если бы доктора решили производить расчеты темпа распространения болезни среди населения, то количество официально объявленных случаев привело бы к искаженной статистике. Чем-то это напоминает ситуацию со статистикой преступности. Предположим, что полиция сообщает об увеличении количества ограблений в каком-то районе. Связано ли это с тем, что полицейские усилили бдительность и стали раскрывать больше преступлений, чем раньше, или же им стало проще сообщать об этом?[95] А может быть, этот район действительно стал более опасным? Подобные проблемы очень сложны для любого, кто хочет делать прогнозы заболеваемости гриппом на ранних стадиях.


Самоотменяющиеся предсказания

Самоотменяющееся предсказание относится к противоположным случаям, при которых факт появления предсказания приводит к прекращению развития ситуации. Интересным примером здесь могут служить системы GPS-навигации, обретающие все большую популярность. Через Манхэттен проходят две основные трассы в направлении с юга на север – Вест-Сайдское шоссе, идущее вдоль реки Гудзон, и скоростная магистраль ФДР-Драйв на восточной стороне острова. В зависимости от конечной точки водитель не всегда может отдать предпочтение определенной трассе. Однако его GPS-система сама укажет, по какой дороге ехать, учитывая степень их загруженности: система, по сути, предсказывает, какой путь выбрать, чтобы быстрее добраться до точки назначения. Проблема возникает, когда много водителей пользуется одной и той же системой: совершенно внезапно дорога становится перегруженной машинами, и прежде «более быстрая» трасса превращается в более медленную. Уже есть ряд теоретических{512} и эмпирических{513} свидетельств того, что это стало проблемой на некоторых часто используемых трассах в Нью-Йорке, Бостоне и Лондоне и что такие системы иногда могут оказаться контрпродуктивными.

Это качество предсказаний порой может представлять проблему и с точки зрения правильности предсказаний, касающихся гриппа, поскольку их цель, хотя бы отчасти, состоит в повышении общей осведомленности о болезни и, таким образом, изменения поведения в обществе. Самым эффективным прогнозом в отношении гриппа может считаться тот, которому не удается сбыться, поскольку он мотивирует людей на более здоровый выбор.

Простота без изощренности

Финский ученый Ханна Кокко предпочитает использовать статистическую или прогнозную модель рисования карт{514}. Модель должна содержать достаточно деталей, чтобы быть полезной и честно отображать фундаментальную картину: наверняка вы не захотите упустить из внимания крупные города, рельефные реки, высокие горные массивы и главные дороги.

Однако чрезмерное количество деталей иногда может запутать путешественника, а порой и сбить его с пути. Как было отмечено в главе 5, эти проблемы носят не только эстетический характер.

Без необходимости усложненные модели способны оставить в системе больше шумов, чем сигналов, и в результате плохо воспроизводят лежащую в основе структуру, тем самым ухудшая качество прогнозов.

Но какой объем деталей считать недостаточным или, напротив, чрезмерным? Чтобы изучить картографию и научиться сочетать элементы искусства и науки, присущие ей, может уйти целая жизнь. Возможно, говорить о выстраивании модели как о форме искусства – это уже чересчур, но что-то правильное в идее есть.

Однако в идеале на вопросы, подобные тому, что задала Кокко, можно дать эмпирический ответ. Работает ли модель? Если нет, то, возможно, нам стоит изучить ее с другой степенью детализации. В эпидемиологии традиционные модели, используемые докторами, довольно просты – и не работают так, как хотелось бы.

Самое базовое математическое описание инфекционного заболевания называется SIR-моделью (рис. 7.4). В этой модели, сформулированной в 1927 г.{515}, принято следующее допущение: существуют три «состояния», в одном из которых любой человек может находиться в каждый момент времени. S (susceptible) означает восприимчивые к болезни, I (infectiousill) – заразившиеся, a R (recovery) – выздоровевшие после болезни. В рамках этой модели переход от одного состояния к другому происходит всегда в одном направлении – от S к I и затем к R. Вакцинация выступает своего рода «короткой дорожкой»[96], позволяющей человеку перейти от S к R без перенесения заболевания. Математика этой модели сравнительно проста и сводится к ряду дифференциальных уравнений, которые можно решить на ноутбуке за несколько секунд.


Рис. 7.4. Схематическое изображение SIR-модели


Перейти на страницу:

Похожие книги