Читаем Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет полностью

Если Вулгарису удается создать достаточно сильную гипотезу о том, что он видит в данных, он делает более агрессивные ставки. Предположим, например, что Вулгарис обращает внимание на ремарку тренера команды Denver Nuggets о том, что он хочет «устроить хорошее шоу» для фанатов. Возможно, это досужая болтовня, но не исключено, что команда будет играть в более быстром темпе, чтобы повысить зрелищность и заставить аудиторию покупать больше билетов на матчи. Если эта гипотеза верна, то Вулгарис может ожидать, что Nuggets будет выигрывать 70 % времени, в отличие от статистических 50 %. Как следует из теоремы Байеса, чем выше убежденность Вулгариса в правильности его гипотезы, тем быстрее он может начинать делать прибыльные ставки на игры Nuggets. Он может начать это делать, изучив, как проходили пары игр с участием команды, и поняв, выдерживает ли его теория испытание практикой. Причем он начнет делать это раньше, чем на данную закономерность обратят внимание букмекеры в Лас-Вегасе и изменят ставки. И, напротив, он позволяет себе не отвлекаться на статистические закономерности, такие как медленный старт Lakers в 1999 г., в котором нет никакого глубокого смысла, но который другие игроки могут ошибочно принять за сигнал.


Таблица 8.4. Научный метод, используемый Вулгарисом{600}

Байесовский путь к снижению неправоты

Но какими можно считать расчеты вероятностей, которые делает Боб, – субъективными или объективными? Это довольно хитрый вопрос.

С эмпирической точки зрения, мы все имеем убеждения и предубеждения, основанные на комбинации нашего опыта, ценностей, знаний и, возможно, политических или профессиональных взглядов. Одна из полезных характеристик байесовской точки зрения состоит в том, что если мы явным образом признаем, что у нас имеются априорные убеждения (влияющие на то, как мы интерпретируем новые свидетельства), то сможем достаточно хорошо описать нашу реакцию на изменения в своем мире. Например, если, согласно априорному убеждению Фишера, вероятность, что курильщики заболеют раком легких, составляют всего 0,00001 %, это объясняет, почему его не могли убедить никакие свидетельства обратного. В сущности, согласно теореме Байеса, ничто не мешает вам оставаться убежденным в чем-то, что вы считаете совершенно правильным. Если, по вашему мнению, вероятность существования Бога – 100 % (или же, напротив, 0 %), то, согласно теореме Байеса, никакое количество доказательств не убедит вас в обратном.

Я не собираюсь ничего говорить о том, существует или нет что-то, во что вы можете верить с абсолютной и беспрекословной уверенностью[113]. Однако возможно, что нам нужно честно говорить об этом. Спор человека, считающего, что вероятность какого-то события составляет 0 %, с человеком, уверенным на 100 % в том, что оно произойдет, – дело бесполезное. Возможно, что именно из-за таких споров и возникало множество конфликтов, таких как религиозные войны в Европе в первые годы после появления печатного пресса.

Но у нас нет оснований предполагать, что все априорные убеждения в равной степени правильны. Однако я склонен считать, что наши убеждения никогда не будут идеально объективны, рациональны или истинны. Вместо этого мы стараемся быть менее субъективными, менее иррациональными и менее неправыми. Создание предсказаний, основанных на наших убеждениях, представляет собой лучший (а возможно, и единственный) способ протестировать самих себя. Если объективность предполагает выявление истины, вне зависимости от наших личных обстоятельств, а предсказание представляет собой лучший способ изучения того, насколько тесно связано наше личное восприятие с великой истиной, то самыми объективными из нас будут считаться те, кто выступает с самыми точными предсказаниями. Статистический метод Фишера, согласно которому объективность была возможна лишь в замкнутых рамках лабораторного эксперимента, пригоден для решения таких задач куда меньше, чем байесовский.

Фактически одно из свойств теоремы Байеса состоит в том, что наши убеждения должны сближаться друг с другом – и приближаться к истине – по мере того, как нам со временем предоставляется все больше свидетельств. На рис. 8.4 я показал в качестве примера, как три инвестора пытаются определить, находятся ли они на «бычьем» или «медвежьем» рынке.


Рис. 8.4. Сближение по методу Байеса


Перейти на страницу:

Похожие книги