Другая, недавно предложенная концепция – теория самоорганизованной критичности,- устанавливает глубокую аналогию между сходом снежных лавин, колебаниями курсов акций, землетрясениями, техногенными катастрофами и проблемами, возникающими при хранении ядерных арсеналов. Третьей голове есть что сказать об "окнах уязвимости" нашей цивилизации и возможных альтернативах.
Впрочем, третьей голове приходится хуже других. Чтобы погубить дело, надо сделать его "престижным". Вспомните 70-е годы. Энтузиасты создавали новую науку – экологию. Спорили, мечтали. А сейчас ... Выдающимися знатоками экологии вдруг оказались незадачливые генсеки и отставные премьеры. Специалистов как-то незаметно оттеснили. Сейчас то же самое происходит с "безопасностью", "устойчивым развитием", "планированием будущего". Это "идет". Под это "дают". Но будущее слишком серьезная вещь, чтобы отдавать его в руки временщиков от политики и науки.
Примерно такие слова авторам приходится говорить студентам физтеха, польстившимся на слова "хаос" и "нелинейная наука". И почти все твердо решают иметь дело со второй головой. Это – отражение отношения к науке в обществе. В обществе, где сегодня не любят смотреть ни на звезды, ни под ноги. Но времена меняются.
2. Структуры, самоорганизация, нелинейная динамика Время простых вопросов
Самая большая беда для науки – превратиться в моду.
Молодость научного направления связана с чувством удивления и с парадоксами. Задается простой вопрос. На него дается очевидный ответ, который оказывается неверным. Это и ведет к размышлениям. Поэтому попробуем вначале удивиться.
Представьте себе, что мы находимся на побережье небольшого острова в океане, длина побережья которого ... бесконечна. Такого не бывает, скажет здравомыслящий читатель. И окажется не прав. Рис.5 показывает, как можно построить такую фигуру.
Рис. 5. Несколько первых шагов в последовательности, приводящей к построению острова Коха, который имеет ограниченную площадь и бесконечный периметр.
На первом шаге берем обычный равносторонний треугольник (см. рис.5). Потом на каждой стороне достраиваем по треугольнику, сторона которого в три, а значит, площадь в девять раз меньше, чем у исходного. И так далее. То, что получится после бесконечного количества таких шагов, называется островом Коха. Почему его побережье бесконечно? Это очень просто. На втором шаге периметр фигуры увеличится в 4/3 раза. На третьем – еще в 4/3. Это произошло потому, что каждый отрезок мы заменили ломаной, длина которой в 4/3 раза больше. А (4/3)n при n, стремящемся к бесконечности, конечно, тоже стремится к бесконечности. Если вспомнить знакомую из школьных времен геометрическую прогрессию, то можно убедиться, что площадь острова Коха конечна.
Теперь представим себе, что мы решили измерить периметр острова Коха, пользуясь линейкой определенной длины. При этом мы, конечно, будем заменять сложную изрезанную береговую линию ломаной со звеньями, не меньшими, чем наша линейка, как это всегда делают географы. Измеренный периметр будет зависеть от длины линейки. Это кажется совершенно неожиданным. Но действительно, чем меньше длина линейки, тем больше измеренная длина побережья. Простейшая процедура измерения длины оказывается совсем не так проста, как кажется вначале.
Остров Коха обладает еще одной забавной особенностью. Допустим, что мы фотографируем этот остров в океане из космоса. Мы можем фотографировать с любым увеличением, но часть побережья будет тем меньше, чем больше увеличение. И мелкие детали в крупном масштабе, естественно, будут теряться. Типичная картина, которую мы увидим, показана на рис.6. В крупном масштабе видим большой зубец и несколько маленьких. Увеличим маленький зубчик. То есть, по существу, увеличим маленький прямоугольничек до размеров первоначального. Опять выделим маленький прямоугольник, опять увеличим и опять увидим то же самое ... И так до бесконечности. Это свойство выглядеть в любом, сколь угодно мелком масштабе примерно одинаково сейчас называется
Рис. 6. Фракталы обладают масштабной инвариантностью – при увеличении мы вновь и вновь видим одну и ту же картину. Побережье острова Коха в разных масштабах, на каждом следующем рисунке левый прямоугольник показан в увеличенном виде.