На это математики могут ответить просто и остроумно:"Важна не сама длина, а то, как она зависит от размеров линейки, т.е. важно некое число, называемое фрактальной размерностью". Для отрезка – 1, для квадрата – 2, для куба – 3. Для фракталов – дробное число. Отсюда и само название "фрактали", происходящее от английского "fractal" – дробный, неполный, частичный. Например, для острова Коха оно лежит между 1 и 2. Такое значение как будто говорит, что это уже не обычная кривая, но еще не плоскость.
Мы надеемся, после чтения всего написанного наш читатель не утратил способности здраво рассуждать. А для того, чтобы эту способность обострить, пусть он представит, что авторы этих строк просят скромную, а может быть, и не очень скромную сумму, например, на исследования фрактальной геометрии. Наверное, сначала возникнет настроение, точно выраженное словами одного грибоедовского героя:"Ну нет, ученостью меня не обморочишь", а потом и первое конкретное возражение:"Если все так просто, как здесь написано, то неужели об этом раньше не знали?".
Конечно, знали. Первый пример фрактала придумал классик математического анализа Вейерштрассе еще в прошлом веке. Так же, как к береговой линии острова Коха, к этой линии нельзя провести касательную ни в одной точке. Такие функции не имеют производной. Они вызывали у современников резкое чувство протеста. Блестящий математик Эрмит писал своему коллеге Стильтьесу:"... С омерзением и ужасом отворачиваюсь от этой зловредной язвы – непрерывных функций, нигде не имеющих производных".
И тут, наверное, рождается второе возражение:"Все это очень занятно. Но, конечно, фракталы не имеют никакого отношения к математическому моделированию реальных объектов и тем более к природе. Да и вообще математика не является естественной наукой. И ее роль не следует переоценивать". Это сильное возражение. Оно лежит в русле классической научной традиции. Следуя традиционным канонам, ценность такого математического "монстра" в познании реальности очень невелика. И хотя уже в начале нашего века французский физик Ж.Перрен высказал мысль о том, что фракталы будут полезны во многих физических задачах, в частности, связанных с броуновским движением, к фракталам относились как к забавной математической безделице.
Ситуация кардинально изменилась с появлением в 1977 г. книги Б.Мандельброта "Форма, случай и размерность". В ней, собственно, и было введено слово "фракталы" и показано, что существование фрактальных множеств позволяет объяснить, а в некоторых случаях и предсказать экспериментальные результаты, полученные в разных областях. Среди них – космология, теория турбулентности, химическая кинетика, физика полимеров, теория просачивания жидкости и еще десятки других. В последние годы к ним прибавились физиология, физика полупроводников, теория роста городов.
Более того, даже остров Коха имеет непосредственное отношение к реальности. Английские военные топографы еще до войны заметили, что длина побережья Великобритании зависит от длины линейки, которой ее измеряют. Аналогичная зависимость определяет длину некоторых рек, побережье многих островов, путь, проходимый частицей при броуновском движении, и многое другое.
Еще пример. Оказалось, что при вытеснении жидкостью с малой вязкостью другой жидкости, с большой вязкостью, первоначально плоская поверхность раздела переходит в поверхность, напоминающую пальцы перчатки. Такие структуры получили название вязких пальцев. Последовательное дробление кончиков пальцев приводит к возникновению фрактальных кластеров. Анализ этого явления и способов борьбы с ним очень важен для приложений. Пальцы наблюдаются при закачке воды под давлением в нефтеносный пласт для повышения нефтеотдачи. Но из-за описанного эффекта вода просачивается значительно дальше, чем хотелось бы, и на поверхность выкачивается смесь, содержащая в основном воду.
Остров Коха показывает, что периметр фигуры может быть никак не связан с ее площадью. Точно так же можно построить тело с конечным объемом и бесконечной площадью поверхности. А теперь вспомним школьную химию, в которой говорится, что большинство технологических процессов требует катализа, и что в большинстве случаев он происходит на поверхности катализатора. Теперь представим себе, что нам удается создавать частицы катализатора, в определенном интервале масштабов устроенные как фракталы с бесконечной площадью. Уже появились первые сообщения о работах экспериментаторов, двигающихся по этому пути.