Итак, еще один мир. Его придумал в 1970 г. английский математик Джон Конвей и назвал игрой "Жизнь". Название связано с тем, что она имитирует рост, распад и различные изменения в популяции живых организмов. В эту игру читатель может поиграть, ничего не зная о каких-либо уравнениях, не пользуясь компьютером, а имея под рукой лишь лист бумаги в клетку. Хотя на компьютере все выглядит, конечно, красивее.
Рассматривается бесконечная плоская решетка квадратных ячеек – клеток. Время в этой игре дискретно (t=1,2...). Клетка может быть живой или мертвой. Изменение ее состояния в момент (t+1) определяется состоянием ее соседей в момент t (соседей у каждой клетки 8, из них 4 имеют с ней общие ребра, а 4 – только вершины). Правила таковы.
Если клетка мертва в момент времени t, она оживает в момент (t+1) тогда и только тогда, когда трое из ее восьми соседей были живы в момент t.
Если клетка была жива в момент времени t, она погибает в момент (t+1) тогда и только тогда, когда меньше, чем две, или больше, чем три соседние клетки, были живы в момент t.
Рис. 9. Столкновение планера со стационарной структурой в игре "Жизнь".
Чтобы читатель почувствовал, насколько причудливо могут развиваться события в этом мире, проследим за судьбой только одной конфигурации. Некоторые из "моментальных снимков" ее эволюции показаны на рис.9. "Домик" из четырех клеток в отсутствие движущейся структуры "планера" стоял бы на месте, не меняясь со временем. "Планер" двигался бы по диагонали, повторяя свою конфигурацию через каждые четыре шага. Однако им суждено было столкнуться. Число клеток вначале растет, захватывая все большую площадь, а потом уменьшается. Когда эволюция закончена, возникает несколько конфигураций, от времени не зависящих, и других, которые повторяют себя на каждом втором шаге. (Их называют "мигалками", на рис.9, соответствующем моменту времени t=182, они выглядят как три расположенные в ряд или в столбик живые клетки. На следующем шаге по времени "ряды" превратятся в "столбики", а "столбики" в "ряды", затем все повторится.)
Видно, что эволюция в этой игре с примитивными правилами, с локальными связями, включающими только ближайших соседей, может быть довольно сложной. Но этого мало. Математики доказали, что эта эволюция может быть сколь угодно сложной. Эта игра эквивалентна универсальной вычислительной машине. В принципе, имея достаточно большую область из таких клеток, с ее помощью можно проводить вычисления, как на компьютере.
Главной тенденцией в электронике стала миниатюризация. Возможно, в будущем элементы компьютеров станут сравнимы с размерами молекул, и связи в них будут возможны только самые простые, локальные. (Впрочем, тогда бы пришлось подумать о радиационных повреждениях, которые бы могли выводить их из строя. Ведь в отличие от живых организмов, электронные схемы не умеют корректировать, "лечить" тонкие повреждения на микроуровне. Пока не умеют.) Возможно, тогда такие игры, как "Жизнь", станут полезными для микроэлектроники.
Сейчас они полезны, например, при создании новых физических теорий. Вот только два примера, связанных с игрой "Жизнь".
Работа компьютера характерна тем, что мы не можем предсказать результат действия ряда программ, не выполнив их полностью. Такие алгоритмы называют вычислительно неприводимыми. Любая величина в нашем мире может быть измерена с конечной точностью, с конечным числом десятичных цифр. Существуют законы природы, определяющие программы, алгоритмы, по которым производятся действия с этими числами. Поэтому американский исследователь С.Уолфрем предлагает взглянуть на наш мир, как на гигантский компьютер. По его мысли, те процессы, в моделировании которых успехи невелики (а это хаотические турбулентные течения, вихри в атмосфере, экономические системы, биологическая эволюция), описываются неприводимыми алгоритмами. Не правда ли, рискованный полет – от игры "Жизнь" до прогнозов погоды?
Другая теория, называемая теорией самоорганизованной критичности, обязанная своим появлением анализу игры "Жизнь" и другим играм такого типа, сейчас завоевывает все больше приверженцев. Ее результаты используют сегодня в космологии, гидродинамике, в геофизике для прогноза землетрясений и во многих других областях.
Модели такого сорта применяют, например, при анализе химических реакций на поверхности. В модели, исследованной М.С.Шакаевой, существует только три уровня концентрации. В этой модели также обнаружены движущиеся конфигурации – "планеры". На рис.10 показаны два таких "планера" и "моментальный снимок" того, что произошло после столкновения. Не правда ли красиво?
Рис. 10. Столкновение двух "планеров" в среде, имитирующей колебательные химические реакции.